
Package ‘UCS’
August 15, 2005

Version 0.5

Title The UCS/R libraries

Author Stefan Evert <evert@ims.uni-stuttgart.de>

Maintainer Stefan Evert <evert@ims.uni-stuttgart.de>

Depends R (>= 1.6.0), graphics, stats, boot

Description All libraries from the UCS/R system

License Artistic License or GPL (same terms and conditions as Perl)

URL http://www.collocations.de/

R topics documented:
Cbeta . 2
Cgamma . 3
EV . 4
EVm . 4
Ibeta . 6
Igamma . 7
Rbeta . 8
Rgamma . 9
UCS . 10
VV . 12
VVm . 13
add.gams . 14
add.jitter . 15
add.ranks . 16
am.key2var . 17
binom.conf.interval . 18
builtin.ams . 19
builtin.gams . 19
ds.find.am . 21
eo.iso . 22
eo.iso.diff . 24
eo.legend . 26
eo.mark . 27
eo.par . 28

1

2 Cbeta

eo.points . 31
eo.setup . 32
evaluation.file . 34
evaluation.plot . 35
evaluation.table . 39
fzm . 40
gam.helpers . 42
gam.iso . 43
gam.score . 45
gamma.nbest . 46
iaa.kappa . 47
iaa.pta . 48
lnre.goodness.of.fit . 49
order.by.am . 50
precision.recall . 51
read.ds.gz . 52
read.spectrum . 53
spectrum.plot . 54
ucs.library . 55
ucs.par . 56
write.lexstats . 57
zm . 58

Index 61

Cbeta The Beta Function (sfunc)

Description

Computes the (complete) Beta function and its base 10 logarithm.

Usage

Cbeta(a, b, log=FALSE)

Arguments

a, b numeric vectors

log if TRUE, returns the base 10 logarithm of the Beta function (default: FALSE)

Details

This is just a front-end to the built-in beta and lbeta functions, provided mainly for consistent
naming. Note that the logarithmic version is scaled to base 10 logarithms, according to the UCS
conventions.

Value

The Beta function with arguments (a, b), or its base 10 logarithm (if log=TRUE).

Cgamma 3

See Also

beta, Ibeta, Rbeta, Cgamma, Igamma, Rgamma

Examples

x <- 5
y <- 3
((x+y+1) * beta(x+1,y+1))^-1 # == choose(x+y, x)

Cgamma The Gamma Function (sfunc)

Description

Computes the (complete) Gamma function and its base 10 logarithm.

Usage

Cgamma(a, log=FALSE)

Arguments

a a numeric vector

log if TRUE, returns the base 10 logarithm of the Gamma function (default: FALSE)

Details

This is just a front-end to the built-in gamma and lgamma functions, provided mainly for consistent
naming. Note that the logarithmic version is scaled to base 10 logarithms, according to the UCS
conventions.

Value

The Gamma function evaluated at a, or its base 10 logarithm (if log=TRUE).

See Also

gamma, Igamma, Rgamma, Cbeta, Ibeta, Rbeta

Examples

Cgamma(5 + 1) # = factorial(5)

4 EVm

EV Expected Vocabulary Size of a LNRE Model (zm, fzm)

Description

Computes the expected vocabulary size of a LNRE model (Baayen, 2001) at sample size N .

Usage

EV(model, N)

Arguments

model an object of class "zm" or "fzm", representing a Zipf-Mandelbrot (ZM) or
finite Zipf-Mandelbrot (fZM) LNRE model

N a vector of positive integers, representing sample sizes

Details

The expected vocabulary size E[V (N)] is the expected number of types at sample size N , according
to the LNRE model model (see Baayen, 2001).

Value

a numeric vector of the same length as N

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

See Also

zm, fzm, EVm, VV, VVm

EVm Expected Frequency Spectrum of a LNRE Model (zm, fzm)

Description

Computes the expected frequency spectrum, relative frequency spectrum, and conditional parameter
distribution of a LNRE model (Baayen, 2001) at sample size N .

Usage

EVm(model, m, N, rho=1, relative=FALSE, ratio=FALSE, lower=TRUE)

EVm 5

Arguments

model an object of class "zm" or "fzm", representing a Zipf-Mandelbrot (ZM) or
finite Zipf-Mandelbrot (fZM) LNRE model

m a vector of positive integers, representing frequency ranks

N a vector of positive integers, representing sample sizes; either m or N should be
a single number

rho a vector of numbers in the range [0, 1]. If length(rho) > 1, both m and N
should be single numbers. See below for details.

relative if TRUE, computes the relative frequency spectrum (see below for details)

ratio if TRUE, computes the ratio between consecutive elements in the expected fre-
quency spectrum

lower if rho is specified, controls whether the lower or upper conditional parameter
distribution is computed

Details

The expected frequency spectrum consists of the numbers E[Vm(N)], which stand for the expected
number of types in frequency class m at sample size N , according to the LNRE model model (see
Baayen, 2001).

If relative=TRUE, the relative frequency spectrum E[Vm(N)]/E[V (N)] is returned. If ratio=TRUE,
the ratios between consecutive expected class sizes, E[Vm+1(N)]/E[Vm(N)], are returned.

When rho is specified, the conditional parameter distribution E[Vm,ρ(N)] is returned, i.e. the ex-
pected number of types in frequency class m at sample size N with probability parameter π ≤ ρ.
If relative=TRUE, the expected proportion E[Rm,ρ] ≈ E[Vm,ρ(N)]/E[V (N)] is returned in-
stead. With lower=FALSE, computes the upper conditional parameter distribution E[Vm,>ρ(N)]
or proportion E[Rm,>ρ(N)]. See Evert (2004, Ch. 4) for details.

Value

a numeric vector of appropriate length (determined either by m, N, or rho)

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD
Thesis, IMS, University of Stuttgart.

See Also

zm, fzm, EVm, VV, VVm

6 Ibeta

Ibeta The Incomplete Beta Function (sfunc)

Description

Computes the incomplete Beta function and its inverse. The Beta value can be scaled to a base 10
logarithm.

Usage

Ibeta(x, a, b, log=FALSE)

Ibeta.inv(y, a, b, log=FALSE)

Arguments

a, b non-negative numeric vectors, the parameters of the incomplete Beta function

x a numeric vector with values in the range [0, 1], the point at which the incomplete
Beta function is evaluated

y a numeric vector, the values of the incomplete Beta function (or their base 10
logarithms if log=TRUE)

log if TRUE, the Beta values are base 10 logarithms (default: FALSE)

Details

The incomplete Beta function is defined by the Beta integral

B(x; a, b) =
∫ x

0

ta−1(1− t)b−1 dt

Value

Ibeta returns the incomplete Beta function with parameters (a,b) evaluated at point x.

Ibeta.inv returns the point x at which the incomplete Beta function with parameters (a,b)
evaluates to y.

See Also

Cgamma, Igamma, Rgamma, Cbeta, Rbeta

Igamma 7

Igamma The Incomplete Gamma Function (sfunc)

Description

Computes the incomplete Gamma function and its inverse. Both the lower and the upper incomplete
Gamma function are supported, and the Gamma value can be scaled to a base 10 logarithm.

Usage

Igamma(a, x, lower=TRUE, log=FALSE)

Igamma.inv(a, y, lower=TRUE, log=FALSE)

Arguments

a a non-negative numeric vector, the parameter of the incomplete Gamma function

x a non-negative numeric vector, the point at which the incomplete Gamma func-
tion is evaluated

y a numeric vector, the values of the incomplete Gamma function (or their base
10 logarithms if log=TRUE)

lower if TRUE, computes the lower incomplete Gamma function (default). Otherwise,
computes the upper incomplete Gamma function.

log if TRUE, the Gamma values are base 10 logarithms (default: FALSE)

Details

The upper incomplete Gamma function is defined by the Gamma integral

Γ(a, x) =
∫ ∞

x

ta−1e−t dt

The lower incomplete Gamma function is defined by the complementary Gamma integral

γ(a, x) =
∫ x

0

ta−1e−t dt

Value

Igamma returns the (lower or upper) incomplete Gamma function with parameter a evaluated at
point x.

Igamma.inv returns the point x at which the (lower or upper) incomplete Gamma function with
parameter a evaluates to y.

See Also

Cgamma, Rgamma, Cbeta, Ibeta, Rbeta

8 Rbeta

Rbeta The Regularized Beta Function (sfunc)

Description

Computes the regularized Beta function and its inverse. The Beta value can be scaled to a base 10
logarithm.

Usage

Rbeta(x, a, b, log=FALSE)

Rbeta.inv(y, a, b, log=FALSE)

Arguments

a, b non-negative numeric vectors, the parameters of the regularized Beta function

x a numeric vector with values in the range [0, 1], the point at which the regular-
ized Beta function is evaluated

y a numeric vector, the values of the regularized Beta function (or their base 10
logarithms if log=TRUE)

log if TRUE, the Beta values are base 10 logarithms (default: FALSE)

Details

The regularized Beta function scales the incomplete Beta function to the interval [0, 1], by dividing
through B(a, b), i.e.

I(x; a, b) =
B(x; a, b)
B(a, b)

Value

Rbeta returns the regularized Beta function with parameters (a,b) evaluated at point x.

Rbeta.inv returns the point x at which the regularized Beta function with parameters (a,b)
evaluates to y.

See Also

Cgamma, Igamma, Rgamma, Cbeta, Ibeta

Rgamma 9

Rgamma The Regularized Gamma Function (sfunc)

Description

Computes the regularized Gamma function and its inverse. Both the lower and the upper regularized
Gamma function are supported, and the Gamma value can be scaled to a base 10 logarithm.

Usage

Rgamma(a, x, lower=TRUE, log=FALSE)

Rgamma.inv(a, y, lower=TRUE, log=FALSE)

Arguments

a a non-negative numeric vector, the parameter of the incomplete Gamma function

x a non-negative numeric vector, the point at which the incomplete Gamma func-
tion is evaluated

y a numeric vector, the values of the regularized Gamma function (or their base
10 logarithms if log=TRUE)

lower if TRUE, computes the lower regularized Gamma function (default). Otherwise,
computes the upper regularized Gamma function.

log if TRUE, the Gamma values are base 10 logarithms (default: FALSE)

Details

The regularized Gamma functions scale the corresponding incomplete Gamma functions to the
interval [0, 1], by dividing through Γ(a). Thus, the lower regularized Gamma function is given by

P (a, x) =
γ(a, x)
Γ(a)

and the upper regularized Gamma function is given by

Q(a, x) =
Γ(a, x)
Γ(a)

Value

Rgamma returns the (lower or upper) regularized Gamma function with parameter a evaluated at
point x.

Rgamma.inv returns the point x at which the (lower or upper) regularized Gamma function with
parameter a evaluates to y.

See Also

Cgamma, Igamma, Cbeta, Ibeta, Rbeta

10 UCS

Examples

P(X >= k) for Poisson distribution with mean alpha
alpha <- 5
k <- 10
Rgamma(k, alpha) # == ppois(k-1, alpha, lower=FALSE)

UCS Introduction to UCS/R

Description

UCS/R consists of a set of R libraries related to the visualisation of cooccurrence data and the
evaluation of association measures. The current functionaliy includes: evaluation graphs for associ-
ation measures (in terms of precision and recall), measures for inter-annotator agreement, and two
population models for word frequency distributions.

Usage

source("/path/to/UCS/System/R/lib/ucs.R")
ucs.library()

Details

UCS/R is initialised by sourceing the file ‘ucs.R’ in the ‘lib/’ subdirectory of the UCS/R di-
rectory tree. This will make the UCS/R documentation available in the R process and provide the
ucs.library command, which is used to load individual UCS/R modules. Enter ucs.library()
now to display a list of available modules (see the ucs.library manpage for details).

Currently, the following modules are available. The listing below also indicates the most important
manpages for each module. Throughout the documentation, it is assumed that you are familiar with
the UCS/Perl naming conventions and data set file format.

• sfunc: Special Mathematical Functions
Convenience interfaces to the Gamma function (Cgamma), the incomplete (and regularized)
Gamma function and its inverse (Igamma, Rgamma), the Beta function (Cbeta), the incom-
plete (and regularized) Beta function and its inverse (Ibeta, Rbeta), and binomial confi-
dence intervals (binom.conf.interval).
All these functions are computed from the pgamma and pbeta distributions (and the corre-
sponding quantile functions) in the standard library of R.

• base: Basic Functions for Loading and Managing UCS data sets
This module provides functions for loading UCS data set files (read.ds.gz), listing an-
notated association measures (ds.find.am, am.key2var), ranking by association scores
(order.by.am, add.ranks), and computing precision/recall tables for the evaluation of
association measures (precision.recall).
The module also includes a listing of all built-in association measures in the UCS/Perl system,
including add-on packages (builtin.ams).

UCS 11

• plots: Evaluation Graphs for Association Measures
This module plots precision-, recall-, and precision-by-recall graphs for the empirical evalua-
tion of association measures (all combined in a single function, evaluation.plot). The
graphs are highly configurable, either locally in each function call or by setting global defaults
(ucs.par). The evaluation.plot function supports confidence intervals, significance
tests for result differences, and evaluation based on random samples (see Evert, 2004, Ch.
5). A simple text-mode version of the precision/recall-based evaluation is provided by the
evaluation.table function in the base module.

• iaa: Measures of Inter-Annotator Agreement
Computes Cohen’s kappa statistic with standard deviation (Fleiss, Cohen & Everitt, 1969) or
confidence interval for proportion of true agreement (Krenn, Evert & Zinsmeister, 2004) from
a 2× 2 contingency table (see iaa.kappa and iaa.pta)

• gam: Generalised association measures (GAMs)
This module implements extensions of several association measures to continuous functions
on a real-valued coordinate space (generalised association measures, GAMs). For details and
terminology, please refer to Evert (2004, Sec. 3.3). The functions in this module compute
GAM scores and iso-surfaces in standard or ebo-coordinates, and can add jitter to a given
data set. New GAMs can easily be added with the register.gam function. Relevant
help pages are builtin.gams, gam.score, gam.iso, gamma.nbest, add.jitter,
add.gams, add.ebo, and gam.helpers.

• eo: Visualise GAMs in the (e,o) plane
This module implements 2-D visualisation of data sets and GAMs by plotting point clouds
and iso-lines in the (e,o) plane (see Evert 2004, Sec. 3.3). The recommended starting point
is the documentation of the eo.setup function, which intialises a new (e,o) plot. Other
relevant help pages are eo.par, eo.points, eo.iso, eo.iso.diff, eo.legend
and eo.mark.

• lexstats: Utilities for lexical statistics
This module contains miscellaneous utility functions for word frequency distributions, includ-
ing: an interface to file formats used by the lexstats software (Baayen 2001); a range of
common plots; goodness-of-fit evaluation for LNRE populations models (cf. the zm and fzm
modules below). Currently, the most useful functions in this module are read.spectrum,
spectrum.plot, and lnre.goodness.of.fit.

• zm: The Zipf-Mandelbrot (ZM) Population Model
This module implements a simple population model for word frequency distributions (Baayen,
2001) based on the Zipf-Mandelbrot law. See (Evert, 2004a) for details. Relevant help pages
are zm, EV, EVm, VV, VVm, write.lexstats, and lnre.goodness.of.fit.

• fzm: The Finite Zipf-Mandelbrot (fZM) Population Model
This module implements the finite Zipf-Mandelbrot model, an extension of the ZM model
(Evert, 2004a). Relevant help pages are fzm, EV, EVm, VV, VVm, write.lexstats, and
lnre.goodness.of.fit.

The command help(package=UCS) will give you a full index of available UCS/R help pages.
Use help.search() for full-text search.

Note

The correct source path for the file ‘ucs.R’ can be set automatically with the UCS/R tool ucs-
config. Simply insert the statement

source("ucs.R")

12 VV

on a separate line in your R script file (say, ‘my-script.R’) and run the shell command

ucs-config my-script.R

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD
Thesis, IMS, University of Stuttgart.

Evert, Stefan (2004a). A simple LNRE model for random character sequences. In Proceedings of
JADT 2004, Louvain-la-Neuve, Belgium, pages 411–422.

Fleiss, Joseph L.; Cohen, Jacob; Everitt, B. S. (1969). Large sample standard errors of kappa and
weighted kappa. Psychological Bulletin, 72(5), 323–327.

Krenn, Brigitte; Evert, Stefan; Zinsmeister, Heike (2004). Determining intercoder agreement for a
collocation identification task. In preparation.

See Also

ucs.library, the UCS/R tutorial (‘tutorial.R’ in the ‘script/’ subdirectory) and the UCS/Perl
documentation.

VV Variance of the Vocabulary Size of a LNRE Model (zm, fzm)

Description

Computes the variance of the vocabulary size of a LNRE model (Baayen, 2001) at sample size N .

Usage

VV(model, N)

Arguments

model an object of class "zm" or "fzm", representing a Zipf-Mandelbrot (ZM) or
finite Zipf-Mandelbrot (fZM) LNRE model

N a vector of positive integers, representing sample sizes

Details

The variance V [V (N)] is computed according to Baayen (2001, 120f). See the EV help page for
some more information on the vocabulary size V (N).

Value

a numeric vector of the same length as N

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

VVm 13

See Also

zm, fzm, VVm, EV, EVm

VVm Variances of the Frequency Spectrum of a LNRE Model (zm, fzm)

Description

Computes the variances of the frequency spectrum and conditional parameter distribution of a
LNRE model (Baayen, 2001) at sample size N .

Usage

VVm(model, m, N, rho=1, relative=FALSE, lower=TRUE)

Arguments

model an object of class "zm" or "fzm", representing a Zipf-Mandelbrot (ZM) or
finite Zipf-Mandelbrot (fZM) LNRE model

m a vector of positive integers, representing frequency ranks
N a vector of positive integers, representing sample sizes; either m or N should be

a single number
rho a vector of numbers in the range [0, 1]. If length(rho) > 1, both m and N

should be single numbers. See below for details.
relative if TRUE, computes variances for the relative conditional parameter distribution

(see below for details). May only be used when rho is specified.
lower if rho is specified, controls whether variances are computed for the lower or for

the upper conditional parameter distribution

Details

The variance V [Vm(N)] is computed according to Baayen (2001, 120f).

When rho is specified, the variances of the conditional parameter distribution V [Vm,ρ(N)] or the
corresponding proportions V [Rm,ρ(N)] are returned, depending on the value of relative. With
lower=FALSE, computes variances for the upper conditional parameter distribution V [Vm,>ρ(N)]
or proportion V [Rm,>ρ(N)]. See Evert (2004, Ch. 4) for details.

The EVm help page provides more information about Vm(N), Vm,ρ(N), Rm,ρ(N), Vm,>ρ(N) and
Rm,>ρ(N).

Note that this function does not compute variances for the relative frequency spectrum (V [Vm(N)/V (N)])
or the ratio between consecutive spectrum elements (V [Vm+1(N)/Vm(N)]).

Value

a numeric vector of appropriate length (determined either by m, N, or rho)

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD
Thesis, IMS, University of Stuttgart.

14 add.gams

See Also

zm, fzm, VVm, EV, EVm

add.gams Annotate Data Set with GAM Scores (gam)

Description

Annotates data set with GAM scores, possibly overwriting existing scores of a standard AM. Op-
tionally, jitter annotated in the data set can be taken into account when computing the scores.

Usage

add.gams(ds, names, jitter=FALSE)

Arguments

ds a UCS data set object

name a character vector specifying the names of generalised association measures to
be annotated in the data set

add.jitter if TRUE, random jitter (which must be annotated in the data set) is added to the
frequency signatures before computing GAM scores (see details below)

Details

The add.gams function uses the standard variable names for AM scores (e.g. am.t.score for
the t.score measure), so that existing scores for the respective standard AMs in the data set will
be overwritten. Rankings for the GAM scores can then be computed in the normal way using the
add.ranks function.

With jitter=TRUE, a small amount of random jitter is added to the frequency signatures in order
to avoid ties in the rankings and facilitate visualisation of the data set. The necessary jitter vectors
have to be stored in special variables in the data set first, which is most easily achieved with the
add.jitter function.

Value

a copy of the data set ds annotated with GAM scores for the specified measures

See Also

gam.score, gam.iso, builtin.gams, add.ranks, add.jitter

Examples

ds <- add.ranks(add.gams(ds, c("t.score", "chi.squared.corr")))

ds <- add.jitter(ds)
gam.names <- ds.find.am(ds)
gam.names <- gam.names[is.builtin.gam(gam.names)]
ds <- add.gams(ds, gam.names, jitter=TRUE)
ds <- add.ranks(ds, gam.names, randomise=FALSE, overwrite=TRUE)

add.jitter 15

add.jitter Random Jitter for Frequency Signatures in Data Set (gam)

Description

Add random jitter to the frequency signatures in a data set, in order to avoid ties in rankings ac-
cording to GAM scores and to facilitate visualisation of the data set with eo and ebo plots. The
add.ebo function is used to re-compute ebo-coordinates from the jittered frequency signatures.

Usage

add.jitter(ds, amount=0.5, overwrite=FALSE)

has.jitter(ds, fail=FALSE)

add.ebo(ds, jitter=FALSE)

Arguments

ds a UCS data set object

amount amount of jitter to be added; the jitter vector for each coordinate (f, f1, f2)
has a uniform distribution over the range [-amount, +amount]

overwrite if TRUE, overwrite existing jitter vectors in the data set

fail if TRUE, abort with an error message unless the data set contains jitter vectors

jitter if TRUE, use the jittered frequency signatures to compute ebo-coordinates (de-
fault: unjittered integer frequencies)

Details

The add.jitter function adds jitter vectors for the joint and marginal frequencies (f, f1,
f2) to a data set, i.e. uniformly distributed random numbers in the range [-amount, +amount].
These vectors are stored in variables x.jitter.f, x.jitter.f1 and x.jitter.f2, where
they can be used by add.ebo, add.gams and other functions. has.jitter tests for the pres-
ence of these variables.

add.ebo computes ebo-coordinates from the frequency signatures and stores them in the standard
variables e, b, o. Unlike the values computed with UCS/Perl tools, add.ebo uses jitter vectors
in this computation when the option jitter=TRUE is passed.

Value

add.jitter and add.ebo return a copy of the data set ds with the request variables added.
has.jitter returns TRUE if the jitter variables are present in ds, and FALSE otherwise.

See Also

add.gams, gamma.nbest

16 add.ranks

Examples

ds <- add.jitter(ds, amount=0.2)

ds <- add.ebo(ds, jitter=TRUE) # recompute ebo coordinates with jitter

add.ranks Compute Rankings for Annotated Association Measures (base)

Description

Add rankings (with or without ties) for specified association measures to a data set object.

Usage

add.ranks(ds, keys=ds.find.am(ds), randomise=TRUE, overwrite=TRUE)

Arguments

ds a UCS data set object
keys a character vector giving the names of one or more association measures. When

it is omitted, rankings are computed for all annotated measures.
randomise if TRUE, ties are broken randomly (default). Otherwise, tied rows are assigned

the same rank, which is the first free one (as in the Olympic Games). See below
for prerequisites.

overwrite if TRUE, existing rankings are overwritten (default). Otherwise, association
measures for which ranks are already annotated are silently skipped. If you mod-
ify association scores within R, be sure to call add.rankswith overwrite=TRUE.

Details

Since add.ranks is based on the order.by.am function, the prerequisites are the same: the
data set must contain association scores for the random measure if randomise=TRUE and an
id variable if randomise=FALSE. See the order.by.am manpage for further information.

Value

Invisibly returns a copy of ds annotated with the requested rankings. The rankings are stored
in variables r.*, where * stands for the name of an association measure (according to the UCS
naming conventions, cf. the am.key2var manpage).

See Also

order.by.am, am.key2var, ds.find.am, read.ds.gz

Examples

from the UCS/R tutorial
GLAW <- read.ds.gz("glaw.scores.ds.gz")
GLAW <- add.ranks(GLAW)

combine into single command
GLAW <- add.ranks(read.ds.gz("glaw.scores.ds.gz"))

am.key2var 17

am.key2var UCS Variable Names for Association Scores and Rankings (base)

Description

These functions implement the UCS naming conventions for variables storing association scores
and the corresponding ranking. is.valid.key checks whether a given string is valid as a name
for an association measure. am.key2var translates a valid AM name into the corresponding
variables (for scores or ranking), and am.var2key extracts the AM name from such a variable.

Usage

is.valid.key(key, warn=FALSE)

am.key2var(key, rank=FALSE)

am.var2key(var)

Arguments

key a character vector, giving the names of one or more association measures

var a character vector of variable names, which must be either association scores or
rankings (but both types can be mixed in the vector)

warn if TRUE, issues a warning if the vector key contains invalid AM names. All
invalid entries are listed in the warning message.

rank if TRUE, return names of the ranking variables corresponding to the specified as-
sociation measures. otherwise, return names of variables for association scores.

Value

is.valid.key returns a logical vector, am.var2key returns a list of AM names (“keys”), and
am.key2var returns a list of variable names (either for association scores or rankings, depending
on the rank parameter).

See Also

builtin.ams for information about built-in association measures, and the ucsfile manpage
in UCS/Perl for a description of the UCS naming conventions (enter the shell command ucsdoc
ucsfile).

Examples

am.key2var(c("t.score", "MI"), rank=TRUE)
am.var2key(c("am.t.score", "r.MI"))

18 binom.conf.interval

binom.conf.interval
Binomial Confidence Intervals

Description

Computes confidence intervals for the success probability of a binomial distribution efficiently.
Unlike binom.test, this function can be applied to vectors.

Usage

binom.conf.interval(k, size, limit=c("lower","upper"),
conf.level=0.05, one.sided=FALSE)

Arguments

k a vector of non-negative integers. Each element represents the number of suc-
cesses out of size trials, i.e. the observed value of a random variable with
binomial distribution.

size a vector of positive integers. Each element represents the number of trials of a
binomial distribution.

limit if "upper", the upper boundaries of the confidence intervals are returned. If
"lower", the lower boundaries are returned. Note that this works both for
one-sided and for two-sided confidence intervals.

conf.level the required confidence level, or rather the significance level of the correspond-
ing binomial test (note that this behaviour differs from the built-in binom.test
function). The default conf.level=0.05 stands for 95% confidence.

one.sided if TRUE, computes one-sided confidence interval (either lower or upper, de-
pending on the value of limit). If FALSE, a two-sided confidence interval is
computed (default).

Details

If one.sided=TRUE, the underlying test is one-sided (with alternative "less" or "greater",
depending on the limit parameter), and the non-trivial boundary of the confidence interval is
returned.

If one.sided=FALSE, the underlying test is two-sided and the requested boundary of the two-
sided confidence interval is returned. For efficiency reasons, the binom.conf.interval func-
tion cheats a little and computes one-sided confidence intervals with significance level conf.level
/ 2.

Value

A numeric vector with the requested boundary of confidence intervals for the unknown success
probabilities of binomial variables.

See Also

binom.test

builtin.ams 19

builtin.ams UCS/Perl Built-in Association Measures (base)

Description

builtin.ams returns a character vector listing the built-in association measures of the UCS/Perl
system (including the standard add-on packages), is.builtin.am checks whether a specified
measure belongs to this set, and am.key2desc returns a short description of the specified mea-
sure.

Usage

builtin.ams()

is.builtin.am(key)

am.key2desc(key)

Arguments

key a character vector specifying the names of one or more association measures

Value

builtin.ams returns a character vector containing the names of all built-in association measures,
is.builtin.am returns a logical vector, and am.key2desc returns a character vector with a
short description of each of the measures in key.

See Also

The information provided by these functions is obtained from the UCS/Perl tool ucs-list-am.
See the ucsam manpage in UCS/Perl for further information about built-in association measures
(using the shell command ucsdoc ucsam).

Examples

print(builtin.ams())
am.key2desc("chi.squared.corr")

builtin.gams Built-in Generalised Association Measures (gam)

Description

List available GAMs (generalised association measures) that can be computed with functions such
as gam.score, add.gams and gam.iso, or test whether a specific GAM is available. Addi-
tional GAMs can be defined with the register.gam function.

20 builtin.gams

Usage

builtin.gams()

is.builtin.gam(names)

register.gam(name, equation, iso.equation=NULL)

Arguments

names a character vector specifying the names of GAMs whose availability is tested

name a single character string specifying the name of a GAM that is defined or re-
defined

equation a function that computes GAM scores from standard or ebo-coordinates (see
below for details)

iso.equation an optional function that computes iso-surfaces in standard or ebo-coordinates
(see below for details)

Details

The names of built-in GAMs are identical to those of the corresponding standard AMs (e.g. t.score
and chi.squared.corr).

The equation argument of register.gam, i.e. the equation defining a new GAM), must be
a function with the signature (o, e, b, f, f1, f2, N). This function can computes GAM
scores either from the ebo-coordinates e, b, o or from the standard coordinates f, f1, f2,
N. It is always invoked with all seven arguments, which are guaranteed to be vectors of the same
length, and must return a vector of corresponding GAM scores.

When an explicit equation for iso-surfaces {g = γ} exists, it can be made available through the
optional argument iso.equation, which expects a function with the signature (gamma, e,
b, f1, f2, N). Again, all six arguments are guaranteed to be vectors of the same length, and
the function must return the corresponding o (or f) coordinates that satisfy the condition g(o, e, b) =
γ (or g(f, f1, f2, N) = γ). When the iso.equation function is available for a GAM, it will be
used by gam.iso for greater speed and accuracy. Otherwise, the iso surface is determined by a
binary search algorithm (which has a unique solution for any semi-sound GAM).

The signatures of the equation and iso.equation functions are checked by register.gam,
which will abort with an error message if they are not correct.

Value

builtin.gams returns a character vector listing the names of available GAMs. is.builtin.gam
returns a logical vector indicating which of the GAMs in the vector names are available.

See Also

builtin.ams, gam.score, add.gams, gam.iso, gam.helpers

Examples

print(builtin.gams())

all(is.builtin.gam(c("MI", "t.score", "chi.squared")))

ds.find.am 21

register.gam("MI5",
eq = function (o, e, b, f, f1, f2, N) { log10(o^5 / e) },
iso = function (gamma, e, b, f1, f2, N) { 10^(gamma/5) * e^(1/5) })

ds.find.am List Association Scores and Rankings in Data Set (base)

Description

am.in.ds tests whether a specified association measure is annotated in a data set, ds.find.am
lists all annotated association measures, and ds.match.am searches the data set for AMs whose
names may be abbreviated to a unique prefix. All three functions look either for association scores
or for rankings.

Usage

am.in.ds(ds, keys, rank=FALSE, fail=FALSE)

ds.find.am(ds, rank=FALSE)

ds.match.am(ds, abbrevs, rank=FALSE)

Arguments

ds a UCS data set, read from a data set file with the read.ds.gz function

keys a character vector of AM names

abbrevs a character vector of AM names, each of which may be abbreviated to a unique
prefix (within the data set)

rank if TRUE, the functions look for annotated rankings; otherwise, they look for
annotated association scores (default)

fail if TRUE, the function aborts with an error message unless all specified AMs are
annotated in the data set

Details

If any of the abbrevs do not have a unique match in the data set, ds.match.am aborts with an
error message (listing all strings that failed to match uniquely).

Value

am.in.ds returns a logical vector of the same length as keys. ds.find.am and ds.match.am
return a character vector containing the names of the annotated association measures.

See Also

read.ds.gz, am.var2key

Examples

GLAW <- read.ds.gz("glaw.scores.ds.gz")
print(ds.find.am(GLAW))

22 eo.iso

eo.iso Draw Iso-Line of a GAM in the (e,o) Plane (eo)

Description

Draw an iso-line of a generalised association measure (GAM) in the (e,o) plane, either for a speci-
fied cutoff threshold γ or an n-best iso-line for a given data set ds. Optionally, the corresponding
acceptance region can be shaded or filled with solid colour.

Usage

eo.iso(gam, gamma=0, b=1, N=1e6, n.best=NULL, ds=NULL,
style=1, fill=solid, solid=FALSE,
steps=eo.par("steps"), jitter=eo.par("jitter"), bw=bw,
col=eo.par("col"), lty=eo.par("lty"), lwd=eo.par("lwd"),
angle=eo.par("angle"), density=eo.par("density"),
solid.col=eo.par("solid"))

Arguments

gam a character string giving the name of a generalised association measure (GAM).
Use the function builtin.gams from the gam module to obtain a list of
available GAMs.

gamma a cutoff threshold that determines the iso-line to be drawn (by the implicit equa-
tion {g = γ}). Use the n.best and ds parameters instead of gamma in order
to obtain an n-best iso-line for the data set ds.

b, N optional balance (b) and sample size (N) parameters for GAMs that are not cen-
tral or size-invariant, respectively. The default b=1 yields the centralised version
of a non-central GAM (for details, see Evert 2004, Sec. 3.3)

n.best, ds When these parameters are specified, the cutoff threshold gamma will automat-
ically be determined so as to yield an n-best acceptance region for the data set
ds.

jitter If TRUE, use jittered coordinates for computing the n-best cutoff threshold (see
above). In this case, the data set has to be annotated with the add.jitter
function first.

style an integer specifying the style (colour, line type and width) in which iso-lines
will be drawn. The number of styles available depends on the global parameter
settings (eo.par). The "factory settings" define 5 different styles for iso-lines.

fill If TRUE, fill in the acceptance region bounded by the given iso-line with shading
lines, according to the chosen style and bw mode. See eo.par for details
on shading styles.

solid If TRUE, fill the acceptance region with solid colour rather than shading lines,
also according to the chosen style and bw mode. Setting solid=TRUE im-
plies fill=TRUE.

steps an integer specifying how many equidistant steps are used for drawing iso-lines.
The default value is set with eo.par.

eo.iso 23

bw If TRUE, the iso-lines are drawn in B/W mode, otherwise in colour mode. This
parameter defaults to the state specified with the initial eo.setup call, but can
be overridden manually.

col, lty, lwd
can be used to override the default style parameters for iso-lines, which are
determined automatically from the global settings (eo.par) according to the
selected style and bw mode.

angle, density
can be used to override the default style parameters for shaded acceptance re-
gion, which are determined automatically from the global settings (eo.par)
according to the selected style and bw mode.

solid.col can be used to override the default colour for solid filled acceptance regions,
which is determined automatically from the global settings (eo.par) according
to the selected style and bw mode.

Details

See the eo.setup help page for a description of the general procedure used to create (e,o) plots.
This help page also has links to other (e,o) plotting functions. The "factory setting" styles are
described on the eo.par help page.

The cutoff threshold γ can either be specified explicitly (with the gamma parameter) or implicitly
as an n-best threshold (with n.best, ds, and optional jitter). The latter method produces the
same result as

gam.iso(gam, gamma=gamma.nbest(ds, gam, n.best, jitter), ...)

Visualisation by (e,o) iso-lines is most suitable for GAMs that are both central and size-invariant
(see Evert 2004, Sec. 3.3). For non-central measures, the eo.iso function uses a balance value of
b = 1, yielding a centralised version of the GAM. Note that many non-central GAMs (especially
those based on statistical tests, such as log.likelihood and chi.squared) have only a weak
dependency on the balance b, so that their centralised iso-surfaces (i.e. extrusions of the iso-lines
along the b-axis) are very similar to the original iso-surfaces. Other GAMs (most notably Dice
and similar measures) are highly dependent on b, though. For measures that are not size-invariant,
the sample size is arbitrarily set to N = 106, which is in a realistic range for real-life data sets. You
may wish to modify the default value in order to match a data set shown in the plot (this is not done
automatically when the ds parameter is specified), or to demonstrate the dependency of iso-lines
on N .

References

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD
Thesis, IMS, University of Stuttgart.

See Also

eo.par, eo.setup, eo.iso.diff

Examples

an example can be found on the "eo.setup" help page

24 eo.iso.diff

eo.iso.diff Highlight Differences between Two Acceptance Regions in the (e,o)
Plane (eo)

Description

Compare the acceptance regions of two GAMs by shading the two difference sets (cf. Evert 2004,
Sec. 5.2.2) in different fill styles. This function should be followed by two eo.iso calls to draw
the iso-lines bounding the difference regions.

Usage

eo.iso.diff(gam1, gam2, gamma1=0, gamma2=0, b=1, N=1e6,
n.best1=NULL, n.best2=NULL, ds=NULL,
style1=4, style2=5, solid=FALSE, bw=bw,
steps=eo.par("steps"), jitter=eo.par("jitter"),
col1=eo.par("col"), angle1=eo.par("angle"),
density1=eo.par("density"), solid.col1=eo.par("solid"),
col2=eo.par("col"), angle2=eo.par("angle"),
density2=eo.par("density"), solid.col2=eo.par("solid"))

Arguments

gam1, gam2 character strings giving the names of two generalised association measures (GAMs).
Use the function builtin.gams from the gammodule to obtain a list of avail-
able GAMs.

gamma2, gamma2
cutoff thresholds that determines the two acceptance regions ({g1 = γ1} and
{g1 = γ1}) to be compared. You can use n.best and ds parameters (see
below) to compute n-best thresholds automatically.

b, N optional balance (b) and sample size (N) parameters for GAMs that are not cen-
tral or size-invariant, respectively. The default b=1 yields the centralised version
of a non-central GAM (for details, see Evert 2004, Sec. 3.3). Note that the same
values are used for both GAMs.

n.best1, n.best2, ds
When n.best1 is specified, the cutoff threshold gamma1 will automatically
be determined so as to yield an n-best acceptance region for the data set ds. In
the same way, n.best2 computes gamma2 as an n-best acceptance threshold.
Note that the data set ds is used for both n-best thresholds.

jitter If TRUE, use jittered coordinates for computing n-best cutoff thresholds (see
above). In this case, the data set has to be annotated with the add.jitter
function first.

style1, style2
integer values specifying fill styles for the two difference regions. style1 is
used for the region D1 of the (e,o) plane accepted by gam1 but not gam2, and
style2 for the region D2 accepted by gam2 but not gam1. Style parameters
include the colour, angle and density of shading lines, or the solid fill colour if
solid=TRUE. See the eo.par help page for more information about available
fill styles.

eo.iso.diff 25

solid If TRUE, fill the difference regions with solid colour rather than shading lines,
also according to the chosen styles and bw mode.

bw If TRUE, the regions are drawn in B/W mode, otherwise in colour mode. This
parameter defaults to the state specified with the initial eo.setup call, but can
be overridden manually.

steps an integer specifying how many equidistant steps are used for the (combined)
boundaries of the difference regions. The default value is set with eo.par.

col1, col2 can be used to override the default colours for shading lines, which are deter-
mined automatically from the global settings (eo.par) according to the se-
lected styles and bw mode.

angle1, angle2
can be used to override the default angles of shading lines, which are deter-
mined automatically from the global settings (eo.par) according to the se-
lected styles and bw mode.

density1, density2
can be used to override the default densities of shading lines, which are deter-
mined automatically from the global settings (eo.par) according to the se-
lected styles and bw mode.

solid.col1, solid.col2
can be used to override the default solid fill colours (with solid=TRUE), which
are determined automatically from the global settings (eo.par) according to
the selected styles and bw mode.

Details

See the eo.setup help page for a description of the general procedure used to create (e,o) plots.
This help page also has links to other (e,o) plotting functions. The "factory setting" styles are
described on the eo.par help page.

See the eo.iso help page for details about iso-lines, acceptance regions and n-best cutoff thresh-
olds.

References

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD
Thesis, IMS, University of Stuttgart.

See Also

eo.par, eo.setup, eo.iso

Examples

setup code (see "eo.setup" example for a detailed explanation)
ucs.library("eo")
ds <- add.jitter(read.ds.gz("dickens.ds.gz"))
select <- rbinom(nrow(ds), 1, .1) == 1
ds <- ds[select,]

comparison of 300-best acceptance regions for Poisson and MI measures
eo.setup(xlim=c(-3,2), ylim=c(0,2), aspect=FALSE)
eo.iso.diff("Poisson.pv", "MI", n.best1=300, n.best2=300, ds=ds, solid=TRUE, jitter=TRUE)
eo.points(ds, style=1, jitter=TRUE)

26 eo.legend

eo.iso("Poisson.pv", n.best=300, ds=ds, style=4)
eo.iso("MI", n.best=300, ds=ds, style=5)
eo.legend.diff(3, c("Poisson+ / MI-","Poisson- / MI+"), solid=TRUE)
eo.close()

eo.legend Draw Legend Box for Point Cloud or Iso-Lines (eo)

Description

Draw a legend box in one of the corners of the active (e,o) plot, showing labels for one or more
styles of data set points, iso-lines or shaded/filled acceptance regions.

Usage

eo.legend.points(corner, legend, styles, bw=bw, cex.mul=2.5, ...)

eo.legend.iso(corner, legend, styles, bw=bw, fill=solid, solid=FALSE,
lw.add=0, density.mul=2, ...)

eo.legend.diff(corner, legend, style1=4, style2=5,
bw=bw, solid=FALSE, density.mul=2, ...)

Arguments

corner an integer specifying the corner of the plot where the legend box will be drawn
(1 = top left, 2 = top right, 3 = bottom right, 4 = bottom left)

legend a character vector specifying labels for the legend box. For the eo.legend.diff
function, it must have length 2 (labels for the difference regions D1 and D2).

styles an integer vector specifying display styles for the items in the legend box (see
the eo.par help page for more information about display styles). Note that
styles must have exactly the same length as legend

style1, style2
display styles for the first and second difference region (D1 and D2). The de-
faults are set to match those of eo.iso.diff.

bw If TRUE, the points, lines or shading/colour boxes in the legend are drawn in
B/W mode; otherwise, they are drawn in colour mode. This parameter defaults
to the state specified with the initial eo.setup call, but can be overridden
manually.

fill If TRUE, show the shadings of acceptance regions instead of iso-line styles in
the legend.

solid If TRUE, show solid colours instead of shadings for acceptance regions in the
legend. Setting solid=TRUE implies fill=TRUE.

cex.mul numeric factor by which plot symbols are scaled in the legend box (with respect
to their size in the plot)

lw.add numeric value added to line widths in the legend box. Only needed when widths
of iso-lines are too thin to be clearly visible in the legend box.

eo.mark 27

density.mul numeric factor by which the density of shading lines is multiplied in the legend
box in order to improve visibility of the shading style

... Any additional parameters are passed through to the legend function used to
draw the legend box.

Details

See the eo.setup help page for a description of the general procedure used to create (e,o) plots.
This help page also has links to other (e,o) plotting functions. The "factory setting" styles are
described on the eo.par help page.

eo.legend.points displays a legend box for point clouds plotted with eo.points; eo.legend.iso
a legend box for iso-lines or acceptance regions drawn with eo.iso; and eo.legend.diff
a legend box for differences between two acceptance regions that have been highlighted with
eo.iso.diff (this is just a convenience wrapper around eo.legend.iso).

Note that legend boxes can only be created for the default styles set with eo.par since it is not
possible to override the style parameters manually.

See Also

eo.par, eo.setup, eo.points, eo.iso, eo.iso.diff

Examples

an example can be found on the "eo.setup" help page

eo.mark Mark Individual Pair Typess in Point Cloud (eo)

Description

Mark individual pair types from a data set in a point cloud plotted with the eo.points function.

Usage

eo.mark(ds, select, style=1, bw=bw, cex=1.5, lwd=3,
jitter=eo.par("jitter"))

Arguments

ds a data set containing pair types that have been plotted as a point cloud, some or
all of which will be marked

select an expression that will be evaluated on the data set ds to determine the pair
types that will be marked. In order to mark the point representing the word pair
black box, e.g., specify select=(l1 == "black" & l2 == "box").

style an integer specifying the style from which the colour of the markers is taken.
Note that the symbol (a thick ring) and its size are hard-coded in the function
and cannot be changed globally.

28 eo.par

bw If TRUE, the markers are drawn in B/W mode, otherwise in colour mode. This
parameter only affects the colour of the marker rings. It defaults to the state
specified with the initial eo.setup call, but can be overridden manually.

cex, lwd size and thickness of the marker rings. The default values are suitable for the
"factory setting" styles used for data set points (see eo.points).

jitter If TRUE, the coordinates of pair types are jittered for the plot. This parameter
must have the same value as in the eo.points call that was used to plot the
point cloud, otherwise marker placement will be incorrect. When jitter=TRUE,
the data set has to be annotated with the add.jitter function first. The de-
fault value is set with eo.par.

Details

See the eo.setup help page for a description of the general procedure used to create (e,o) plots.
This help page also has links to other (e,o) plotting functions. The "factory setting" styles are
described on the eo.par help page.

See Also

eo.par, eo.setup, eo.points

eo.par Graphics Parameters for (e,o) Plots (eo)

Description

Set default graphics parameters for (e,o) plots, similar to ucs.par in the plots module and par
for general graphics parameters. Parameter values can be set by specifying them as arguments in
name=value form, or by passing a single list of named values. The current values can be queried
by giving their names as character strings.

Usage

eo.par(...)

.eo.PAR

Arguments

... either character strings (or vectors) specifying the names of parameters to be
queried, or parameters to be set in name=value form, or a single list of named
values. Valid parameter names are described below.

eo.par 29

Details

The current default parameters are stored in the global variable .eo.PAR. They can be queried
by giving their names as one or more character vectors to eo.par. eo.par() (no arguments)
returns all eo graphics parameters.

Parameters are set by specifying their names and the new values as name=value pairs. Such a
list can also be passed as a single argument to eo.par, which is typically used to restore previous
parameter values (that have been saved in a list variable).

In order to restore the "factory settings", reload the module with the command ucs.library("eo",
reload=TRUE).

Value

When parameters are set, their former values are returned in an invisible named list. Such a list can
be passed as a single argument to eo.par to restore the previous settings.

When a single parameter is queried, its value is returned directly. When two or more parameters are
queried, the result is a named list.

Note the inconsistency, which is the same as for par: setting one parameter returns a list, but
querying one parameter returns a vector (or a scalar, i.e. a vector of length 1).

Graphics Parameters for (e,o) Plots

bw If TRUE, (e,o) plots are created in B/W mode by default.

xlim, ylim Integer vectors of length 2, specifying default ranges for the e-axis (xlim) and o-
axis (ylim) in orders of magnitude (i.e., base 10 logarithms: -2 corresponds to .01, 0 corre-
sponds to 1, and 3 corresponds to 1000). When the default values are not set, every call to the
eo.setup function must either specify xlim and ylim values or a data set, from which
suitable ranges are computed.

aspect If TRUE, an aspect ratio of 1:1 is enforced for every (e,o) plot, i.e. the axis ranges are
extended as necessary (assuming a square plotting region). The factory setting is TRUE.

log.marks If TRUE, tick marks on the axes are labelled in logarithmic units, i.e. orders of
magnitude. Otherwise, absolute numbers are used. The factory setting is FALSE. (Note that
(e,o) plots are always drawn in logarithmic scale.)

steps An integer specifying the number of equidistant steps used for drawing iso-lines. The
factory setting is 100.

jitter If TRUE, always uses jittered coordinates for plotting data sets and computing n-best
thresholds. Note that all data sets must be annotated with the add.jitter function first.
The factory setting is FALSE.

cex Overall character expansion factor (for tick marks, axis labels and legends). The factory
setting is 1.3.

col A character of integer vector specifying line colours for the different styles of iso-lines in
colour mode (see the par manpage for details on colour specification). Values are recycled to
match the length of the lty and lwd parameters when necessary. The factory setting defines
5 styles in black, blue, red, magenta and cyan.

lty A character or integer vector specifying line types for the different styles of iso-lines in colour
mode (see the par manpage for details). Values are recycled to match the length of the col
and lwd parameters when necessary.

lwd A numeric vector specifying line widths for the different styles of iso-lines in colour mode.
Values are recycled to match the length of the col and lty parameters when necessary.

30 eo.par

angle, density Numeric vectors specifying the angle and density of shading lines when the
acceptance region bounded by a given iso-line is filled. These vectors should supportas many
styles as col, lty and lwd above. Details on shading lines can be found on the polygon
help page.

solid A character or integer vector specifying background colours for the different styles of iso-
lines when the acceptance region is filled with solid colour (rather than shading lines).

bw.col, bw.lty, bw.lwd Colour, line type and line width for iso-lines in B/W mode (corre-
sponding to col, lty and lwd in colour mode). The factory setting defines 5 styles with
solid, dashed, grey, dotted and dark grey dot-dash lines.

bw.angle, bw.density, bw.solid Angle and density of shading lines, as well as solid colour,
for filled acceptance regions in B/W mode (corresponding to angle, density and solid
in colour mode)

pt.pch A character or integer vector specifying plot symbols for the different styles of data set
points in colour mode (see the points help page for a full list of available plot symbols). Val-
ues are recycled to match the length of the pt.cex and pt.col parameters when necessary.
The factory setting defines 5 styles with black, green, red, yellow and orange dots.

pt.cex A numeric vector specifying character expansion factors for the different styles of data set
points in colour mode. Values are recycled to match the length of the pt.pch and pt.col
parameters when necessary.

pt.col A character or integer vector specifying colours for the different styles of data set points
in colour mode (see the par help page for details on colour specification). Values are recycled
to match the length of the pt.pch and pt.cex parameters when necessary.

bw.pt.pch, bw.pt.cex, bw.pt.col Plot symbol, character expansion and colour for data
set points in B/W mode (corresponding to pt.pch, pt.cex and pt.col in colour mode).
The factory setting defines 5 styles with black dots, circles, + crosses, triangles and x crosses.

See Also

eo.setup, eo.iso, eo.iso.diff, eo.points, eo.legend, ucs.par, par

Examples

print(names(ucs.eo())) # list available parameters

eo.par("col", "lty", "lwd") # the default styles for iso-lines
eo.par(c("col", "lty", "lwd")) # works as well

temporary changes to graphics paramters:
par.save <- eo.par(bw=TRUE, steps=200)
(e,o) plots use the modified parameters here
eo.par(par.save) # restore previous values

ucs.library("eo", reload=TRUE) # reload module for factory defaults

eo.points 31

eo.points Draw Data Set as Point Cloud in (e,o) Plane (eo)

Description

Plot (selected) pair types from a data set as a point cloud in the (e,o) plane. Points can be drawn in
any of the styles defined in the global defaults (eo.par), as determined by the style parameter.

Usage

eo.points(ds, style=1, select=NULL, bw=bw, jitter=eo.par("jitter"),
pch=par("pt.pch"), cex=par("pt.cex"), col=par("pt.col"), ...)

Arguments

ds a data set containing the pair types to be plotted as a point cloud

style an integer specifying the style (shape, size and colour) in which points will be
drawn. The number of styles available depends on the global parameter settings
(eo.par). The "factory settings" define 5 different styles for points.

select an optional expression, which is evaluated on the data set ds to select a subset
of the pair types for plotting (e.g. select=(f <= 10 & b.TP) to display
pair types with joint frequency f ≤ 10 that are marked as true positives).

bw If TRUE, the points are drawn in B/W mode, otherwise in colour mode. This
parameter defaults to the state specified with the initial eo.setup call, but can
be overridden manually.

jitter If TRUE, the coordinates of pair types are jittered for the plot, i.e. a small random
displacement is added to each point so that the point cloud has a more homoge-
neous appearance. In order to use this option, the data set has to be annotated
with the add.jitter function first. The default value is set with eo.par.

pch, cex, col
The style parameters for points are determined automatically from the global
settings (eo.par), according to the selected style and bw mode. They can
be overridden by specifying explicit values in the function call.

... Any additional parameters are passed through to the points function that
draws the point cloud.

Details

See the eo.setup help page for a description of the general procedure used to create (e,o) plots.
This help page also has links to other (e,o) plotting functions. The "factory setting" styles are
described on the eo.par help page.

See Also

eo.par, eo.setup

32 eo.setup

Examples

an example can be found on the "eo.setup" help page

eo.setup Initialise and Finalise an (e,o) Plot (eo)

Description

eo.setup initialises a new (e,o) plot window, which can then be drawn into with calls to eo.iso,
eo.points and similar functions. The plot has to be finalised with eo.close before a new plot
can be generated.

A detailed explanation of (e,o) plots and their interpretation can be found in Section 3.3 of Evert
(2004).

Usage

eo.setup(xlim=eo.par("xlim"), ylim=eo.par("ylim"), ds=NULL,
bw=eo.par("bw"), file=NULL,
aspect=eo.par("aspect"), log.marks=eo.par("log.marks"),
cex=eo.par("cex"), ...)

eo.close()

Arguments

xlim, ylim integer vectors of length 2, specifying ranges for the e-axis (xlim) and o-axis
(ylim) in orders of magnitude (i.e., base 10 logarithms: -2 corresponds to .01, 0
corresponds to 1, and 3 corresponds to 1000). If xlim and ylim are not given
and no default values have been set with eo.par, the ds parameter has to be
specified. Note that (e,o) plots are always drawn in logarithmic scale.

ds A data set from which suitable ranges for the e-axis and o-axis are computed.
The automatically determined values are overridden by explicit xlim and ylim
parameters.

bw If TRUE, the (e,o) plot is drawn in B/W mode, otherwise in colour mode. The
default value is set with eo.par.

file a character string giving the name of a PostScript file. If specified, the (e,o) plot
is saved to file in EPS format rather than displayed on screen. Note that this
file will only be written after eo.close has been called.

aspect If TRUE, an aspect ratio of 1:1 is enforced by extending the axis ranges as nec-
essary (assuming that the plotting region is square). The default value is set with
eo.par.

log.marks If TRUE, tick marks on the axes are labelled in logarithmic units, i.e. orders of
magnitude. Otherwise, absolute numbers are used. The default value is set with
eo.par. (Recall that (e,o) plots are always drawn in logarithmic scale.)

eo.setup 33

cex overall character expansion factor (for tick marks, axis labels and legends). The
default value is set with eo.par.

... Any additional parameters are passed through to the plot function used to set
up the plot region and axes.

Details

An (e,o) plot is typically created in four stages:

• Set up the plot with eo.setup, defining suitable ranges for the e-axis. These ranges and
some other state information (e.g. whether the plot is drawn in colour or B/W mode) are
recorded in the global variable .eo.STATE.

• Draw data sets as point clouds with eo.points and iso-lines for GAMs with eo.iso.
Differences between two acceptance regions can be highlighted with eo.iso.diff. The
eo.mark function can be used to mark individual points with circles.

• Draw legend boxes in the corners of the plot with eo.legend.points, eo.legend.iso
and eo.legend.diff.

• Finalise the plot with eo.close. When a file argument has been specified in the eo.setup
call, the plot will be saved to a PostScript file at this stage.

Default values for xlim, ylim, bw, aspect, log.marks and cex can be set with the eo.par
function. See the eo.par help page for "factory settings" of these parameters, as well as default
line and point styles in colour and B/W mode.

Note that (e,o) plots are always drawn in logarithmic scale and tick marks are shown for orders of
magnitude (full powers of ten). The log.marks parameter only determines whether the labels on
these tick marks show linear (.1, 1, 10, 100, . . .) or logarithmic (-1, 0, 1, 2, . . .) values.

References

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD
Thesis, IMS, University of Stuttgart.

See Also

eo.par, eo.points, eo.iso, eo.iso.diff, eo.mark, eo.legend

Examples

ucs.library("eo")

load data set file, add jitter, and reduce to random 10
ds <- add.jitter(read.ds.gz("dickens.ds.gz"))
select <- rbinom(nrow(ds), 1, .1) == 1
ds <- ds[select,]

1) set up new (e,o) plot with suitable axis ranges
eo.setup(ds=ds) # note that y axis is extend to enforce 1:1 aspect

2) add data set as point cloud and three iso-lines
eo.points(ds, style=5, jitter=TRUE)
eo.iso("Poisson.pv", 3, style=1) # p-value = 1e-3
eo.iso("z.score", 3.09, style=2) # corresponding one-sided z-score

34 evaluation.file

eo.iso("t.score", 3.09, style=3) # same as t-score with df=Inf

3) add legend boxes in top right (2) and bottom right (3) corner
eo.legend.points(2, "pair type", 5)
eo.legend.iso(3, c("Poisson", "z-score", "t-score"), 1:3)

4) finalise the (e,o) plot
eo.close()

evaluation.file Evaluation Graphs for Association Measures (plots)

Description

The evaluation.plot function is often invoked twice with the same parameter settings, once
for on-screen display, and once for saving the plot to a PostScript file. evaluation.file auto-
mates this process, automatically switching between colour mode for the screen version and B/W
mode for the PostScript version.

Usage

evaluation.file(ds, keys, file, bw=NULL, ...)

Arguments

ds a UCS data set object (passed to evaluation.plot)

keys a character vector specifying the names of association measures to be evaluated
(passed to evaluation.plot)

file a character string giving the name of a file to which the PostScript version of the
plot will be saved

bw if TRUE, both versions will be in B/W; if FALSE, both versions will be in colour.
If unspecified, evaluation.file switches automatically from colour mode
(for the screen version) to B/W mode (for the PostScript file), which is the most
common use.

Details

PostScript versions can be suppressed by setting

ucs.par(do.file=FALSE)

In this case, evaluation.file will only draw the screen versions of the graphs, which is con-
venient when experimenting and while fine-tuning the plots.

See Also

evaluation.plot, ucs.par, and the tutorial script ‘tutorial.R’ in the ‘script/’ directory.

evaluation.plot 35

evaluation.plot Evaluation Graphs for Association Measures (plots)

Description

An implementation of evaluation graphs for the empirical evaluation of association measures in
terms of precision and recall, as described in (Evert, 2004, Ch. 5). Graphs of precision, recall and
local precision for n-best lists, as well as precision-by-recall graphs are all provided by a single
function evaluation.plot.

Usage

evaluation.plot(ds, keys, tp=ds$b.TP,
x.min=0, x.max=100, y.min=0, y.max=100,
x.axis=c("n.best", "proportion", "recall"),
y.axis=c("precision", "local.precision", "recall"),
n.first=ucs.par("n.first"), n.step=ucs.par("n.step"),
cut=NULL, window=400,
show.baseline=TRUE, show.nbest=NULL, show.npair=NULL,
conf=FALSE, conf.am=NULL, conf.am2=NULL,
test=FALSE, test.am1=NULL, test.am2=NULL,
test.step=ucs.par("test.step"), test.relevant=0,
usercode=NULL,
file=NULL, aspect=1, plot.width=6, plot.height=6,
cex=ucs.par("cex"), lex=ucs.par("lex"), bw=FALSE,
legend=NULL, bottom.legend=FALSE,
title=NULL, ...)

Arguments

ds a UCS data set object, read in from a data set file with the read.ds.gz func-
tion. ds must contain rankings for the association measures listed in the keys
parameter (use add.ranks to add such rankings to a data set object).

keys a character vector naming up to 10 association measures to be evaluated. Each
name may be abbreviated to prefix that must be unique within the measures
annotated in ds. Use the ds.find.am function to obtain a list of measures
annotated in the data set, and see the ucsam manpage in UCS/Perl for detailed
information about the association measures supported by the UCS system (with
the shell command ucsdoc ucsam).

tp a logical vector indicating true positives, parallel to the rows of the data set ds.
If tp is not specified, the data set must contain a variable named b.TP which is
used instead.

x.min, x.max the limits of the x-axis in the plot, used to “zoom in” to an interesting region.
The interpretation of the values depends on the x.axis parameter below. For
x.axis="n.best" (the default case), x.min and x.max refer to n-best
lists. Otherwise, they refer to percentages ranging from 0 to 100. By default,
the full data set is shown.

y.min, y.max the limits of the y-axis in the plot, used to “zoom in” to an interesting region.
The values are always interpreted as percentages, ranging from 0 to 100. By
default, y.max is fitted to the evaluation graphs (unless y.axis="recall",
where y.max is always set to 100).

36 evaluation.plot

x.axis select variable shown on x-axis. Available choices are the n-best list size n
("n.best", the default), the same as a proportion of the full data set ("proportion"),
and the recall as a percentage ("recall"). The latter produces precision-by-
recall graphs. Unless you are silly enough to specify y.axis="recall" at
the same time, that is.

y.axis select variable shown on x-axis. Available choices are the precision ("precision",
the default), an estimate for local precision ("local.precision", see de-
tails below), and the recall ("recall"). All three variables are shown as per-
centages ranging from 0 to 100.

n.first the smallest n-best list to be evaluated. Shorter n-best lists typically lead to
highly unstable evaluation graphs. The standard setting is 100, but a higher
value may be necessary for random sample evaluation (see details below). If
n.first is not specified, the default supplied by ucs.par is used.

n.step the step width for n-best lists in the evaluation graphs. Initially, precision and
recall are computed for all n-best lists, but only every n.step-th one is plot-
ted, yielding graphs that look less jagged and reducing the size of generated
PostScript files (see the file parameter below). If n.step is not specified,
the default supplied by ucs.par is used.

cut for each association measure, pretend that the data set consists only of the cut
highest-ranked candidates according to this measure. This trick can be used to
perform an evaluation of n-best lists without having to annotate the full data set.
The candidates from all relevant n-best lists are combined into a single data set
file and cut is set to n.

window number of candidates to consider when estimating local precision (default: 400),
i.e. with the option y.axis="local". Values below 400 or above 1000 are
rarely useful. See below for details.

show.baseline
if TRUE, show baseline precision as dotted horizontal line with label (this is the
default). Not available when y.axis="recall".

show.nbest integer vector of n-best lists that will be indicated as thin vertical lines in the
plot. When x.axis="recall", the n-best lists are shown as diagonal lines.

show.npair when x.axis="proportion", the total number of candidates in ds is shown
in the x-axis label. Set show.npair=NULL to suppress this, or set it to an in-
teger value in order to lie about the number of candidates (rarely useful).

conf if TRUE, confidence intervals are shown as coloured or shaded regions around
one or two precision graphs. In this case, the parameter conf.am must also be
specified. Alternatively, conf can be set to a number indicating the significance
level to be used for the confidence intervals (default: 0.05, corresponding to
95% confidence). See below for details. Note that conf is only available when
y.axis="precision".

conf.am name of the association measure for which confidence intervals are displayed
(may be abbreviated to a prefix that is unique within keys)

conf.am2 optional second association measure, for which confidence intervals will also be
shown

test if TRUE, significance tests are carried out for the differences between the evalu-
ation results of two association measures, given as test.am1 and test.am2
below. Alternatively, test can be set to a number indicating the significance
level to be used for the tests (default: 0.05). n-best lists where the result dif-
ference is significant are indicated by arrows between the respective evaluation

evaluation.plot 37

graphs (when x.axis="recall") or by coloured triangles (otherwise). See
details below. Note that test is not available when y.axsis="local".

test.am1 the first association measure for significance tests (may be abbreviated to a prefix
that is unique within keys). Usually, this is the measure that achieves better
performance (but tests are always two-sided).

test.am2 the second association measure for significance tests (may be abbreviated to a
prefix that is unique within keys)

test.step the step width for n-best lists where significance tests are carried out, as a multi-
ple of n.step. The standard setting is 10 since the significance tests are based
on the computationally expensive fisher.test functio and since the trian-
gles or arrows shown in the plot are fairly large. If test.step is not specified,
the default supplied by ucs.par is used.

test.relevant
a positive number, indicating the estimated precision differences that are con-
sidered “relevant” and that are marked by dark triangles or arrows in the plot.
See below for details.

usercode a callback function that is invoked when the plot has been completed, but before
the legend box is drawn. This feature is mainly used to add something to a plot
that is written to a PostScript file. The usercode function is invoked with
parameters region=c(x.min,x.max,y.min,y.max) and pr, a list of
precision/recall tables (as returned by precision.recall) for each of the
measures in keys.

file a character string giving the name of a PostScript file. If specified, the evaluation
plot will be saved to file rather than displayed on screen. See evaluation.file
for a function that combines both operations.

aspect a positive number specifying the desired aspect of the plot region (only available
for PostScript files). In the default case x.axis="n.best", aspect refers
to the absolute size of the plot region. Otherwise, it specifies the size ratio be-
tween percentage points on the x-axis and the y-axis. Setting aspect modifies
the height of the plot (plot.height).

plot.width, plot.height
the width and height of a plot that is written to a PostScript file, measured in
inches. plot.height may be overridden by the aspect parameter, even if
it is set explicitly.

cex character expansion factor for labels, annotations, and symbols in the plot (see
par for details). If cex is not specified, the default supplied by ucs.par is
used.

lex added to the line widths of evaluation graphs and some decorations (note that
this is not an expansion factor). If lex is not specified, the default supplied by
ucs.par is used.

bw if TRUE, the evaluation plot is drawn in black and white, which is mostly used
in conjunction with file to produce figures for articles (defaults to FALSE).
See below for details.

legend a vector of character strings or expressions, used as labels in the legend of the
plot (e.g. to show mathematical symbols instead of the names of association
measures). Use legend=NULL to suppress the display of a legend box.

bottom.legend
if TRUE, draw legend box in bottom right corner of plot (default is top right
corner).

38 evaluation.plot

title a character vector or expression to be used as the main title of the plot (optional)

... any other arguments are set as local graphics parameters (using par) before the
evaluation plot is drawn

Details

When y.axis="local.precision", the evaluation graphs show local precision, i.e. an es-
timate for the density of true positives around the n-th rank according to the respective association
measure. Local precision is smoothed using a kernel density estimate with a Gaussian kernel (from
the density function), based on a symmetric window covering approximately window candi-
dates (default: 400). Consequently, the resulting values do not have a clear-cut interpretation and
should not be used to evaluate the performance of association measures. They are rather a means of
exploratory data analysis, helping to visualise the relation between association scores and the true
positives in a data set (see Evert, 2004, Sec. 5.2 for an example).

In order to generalise evaluation results beyond the specific data set on which they were obtained, it
is necessary to compute confidence intervals for the observed precision values and to test whether
the observed result differences are significant. See (Evert, 2004, Sec. 5.3) for the methods used and
the interpretation of their results.

Confidence intervals are computed by setting conf=TRUE and selecting an association measure
with the conf.am parameter. The confidence intervals are displayed as a coloured or shaded
region around the precision graph of this measure (confidence intervals are not available for graphs
of recall or local precision). The default confidence level of 95% will rarely need to be changed.
Optionally, a second confidence region can be displayed for a measure selected with the conf.am2
parameter.

Significance tests for the result differences are activated by setting test=TRUE (not available
for graphs of local precision). The evaluation results of two association measures (specified with
test.am1 and test.am2) are compared for selected n-best lists, and significant differences are
marked by coloured triangles or arrows (when x.axis="recall"). The default significance
level of 0.05 will rarely need to be changed. Use the test.step parameter to control the spacing
of the triangles or arrows.

A significant difference indicates that measure A is truly better than measure B, rather than just
as a coincidence in a single evaluation experiment. Formally, this “true performance” can be de-
fined as the average precision of a measure, obtained by averaging over many similar evaluation
experiments. Thus, a significant difference means that the average precision of A is higher than
that of B, but it does not indicate how great the difference is. A tiny difference (say, of half a
percent point) is hardly relevant for an application, even if there is significant evidence for it. If
the test.relevant parameter is set, the evaluation.plot function attempts to estimate
whether there is significant evidence for a relevant difference (of at least a many percent points as
given by the value of test.relevant), and marks such cases by darker triangles or arrows. This
feature should be considered experimental and used with caution, as the computation involves many
approximations and guesses (exact statistical inference for the difference in true precision not being
available).

It goes without saying that confidence regions and significance tests do not allow evaluation results
to be generalised to a different extraction task (i.e. another type of cooccurrences or another defini-
tion of true positives), or even to the same task under different conditions (such as a source corpus
from a different domain, register, time, or a corpus of different size). The unpredictability of the
performance of association measures for different extraction tasks or under different conditions has
been confirmed by various evaluation studies.

Generally, evaluation plots can be drawn in two modes: colour (bw=FALSE, the default) or black
and white (bw=TRUE). The styles of evaluation graphs are controlled by the respective settings in
ucs.par, while the appearance of various other elements is hard-coded in the evaluation.plot

evaluation.table 39

function. In particular, confidence regions are either filled with a light background colour (colour
mode) or shaded with diagonal lines (B/W mode). The triangles or arrows used to mark significant
differences are yellow or red (indicating relevance) in colour mode, and light grey or dark grey
(indicating relevance) in B/W mode. B/W mode is mainly used to produce PostScript files to be
included as figures in articles, but can also be displayed on-screen for testing purposes.

The evaluation.plot function supports evaluation based on random samples, or RSE for
short (Evert, 2004, Sec. 5.4). Missing values (NA) in the tp vector (or the b.TP variable in
ds) are interpreted as unannotated candidates. In this case, precision, recall and local precision
are computed as maxmium-likelihood estimates based on the annotated candidates. Confidence
intervals and significance tests, which should not be absent from any RSE, are adjusted accordingly.
A confidence interval for the baseline precision is automatically shown (by thin dotted lines) when
RSE is detected. Note that n-best lists (as shown on the x-axis) still refer to the full data set, not just
to the number of annotated candidates.

Note

The following functions are provided for compatibility with earlier versions of UCS/R: precision.plot,
recall.plot, and recall.precision.plot. They are simple front-ends to evaluation.plot
with the implicit parameter settings y.axis="recall" and y.axis="precision", x.axis="recall"
for the latter two.

References

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD
Thesis, IMS, University of Stuttgart.

See Also

ucs.par, evaluation.file, read.ds.gz, and precision.recall. The R script ‘tutorial.R’
in the ‘script/’ directory provides a gentle introduction to the wide range of possibilities offered by
the evaluation.plot function.

evaluation.table Precision/Recall Tables for the Evaluation of Association Measures
(base)

Description

A simple text-mode version of the precision/recall-based evaluation provided by the plots mod-
ule. Returns a table of precision or recall values for a selected range of association measures on
selected n-best lists. This is a preliminary version of the function - both interface and function-
ality may change in future releases.

Usage

evaluation.table(ds, keys, n, tp=ds$b.TP, recall=FALSE)

40 fzm

Arguments

ds a UCS data set object, read in from a data set file with the read.ds.gz func-
tion. ds must contain rankings for the association measures listed in the keys
parameter (use add.ranks to add such rankings to a data set object).

keys a character vector specifying the names of association measures to be evaluated.
Each name may be abbreviated to prefix that must be unique within the measures
annotated in ds. Use the ds.find.am function to obtain a list of measures
annotated in the data set, and see the ucsam manpage in UCS/Perl for detailed
information about the association measures supported by the UCS system (with
the shell command ucsdoc ucsam).

n a vector of n-best sizes for which precision or recall values are computed

tp a logical vector indicating true positives, parallel to the rows of the data set ds.
If tp is not specified, the data set must contain a variable named b.TP which is
used instead.

recall if TRUE, returns table of recall values, otherwise table of precision values (de-
fault)

Value

A data frame whose rows correspond to n-best lists. In addition to the column labelled n, which
gives the n-best lists for which the evaluation was carried out, there is one column for each selected
association measure. The column is labelled with the name of the measure and lists the correspond-
ing precision or recall values, depending on the recall parameter.

See Also

evaluation.plot, precision.recall

fzm The Finite Zipf-Mandelbrot LNRE Model (fzm)

Description

Object constructor for a finite Zipf-Mandelbrot (fZM) LNRE model with parameters α, A and
B (Evert, 2004a). Either the parameters are specified explicitly, or one or more of them can be
estimated from an observed frequency spectrum.

Usage

fzm(alpha, A, B)

fzm(alpha, A, N, V)

fzm(alpha, N, V, spc, m.max=15, stepmax=10, debug=FALSE)

fzm(N, V, spc, m.max=15, stepmax=10, debug=FALSE)

fzm 41

Arguments

alpha a number in the range (0, 1), the shape parameter α of the fZM model. alpha
can automatically be estimated from N, V, and spc.

A a small positive number A � 1, the parameter A of the fZM model. A can
automatically be estimated from N, V, and spc.

B a large positive number B � 1, the parameter B of the fZM model. B can
automatically be estimated from N and V.

N the sample size, i.e. number of observed tokens
V the vocabulary size, i.e. the number of observed types
spc a vector of non-negative integers representing the class sizes Vm of the observed

frequency spectrum. The vector is usually read from a file in lexstats format
with the read.spectrum function.

m.max the number of ranks from spc that will be used to estimate the α parameter
stepmax maximal step size of the nlm function used for parameter estimation. It should

not be necessary to change the default value.
debug if TRUE, print debugging information during the parameter estimation process.

This feature can be useful to find out why parameter estimation fails.

Details

The fZM model with parameters α ∈ (0, 1) and C > 0 is defined by the type density function

g(π) := C · π−α−1

for A ≤ π ≤ B. The normalisation constant C is determined from the other parameters by the
condition ∫ B

A

π · g(π)dπ = 1

The parameters α and A are estimated simultaneously by nonlinear minimisation (nlm) of a multi-
nomial chi-squared statistic for the observed against the expected frequency spectrum. Note that
this is different from the multivariate chi-squared test used to measure the goodness-of-fit of the
final model (Baayen, 2001, Sec. 3.3).

See Evert (2004, Ch. 4) for further mathematical details, especially concerning the expected vocab-
ulary size, frequency spectrum and conditional parameter distribution, as well as their variances.

Value

An object of class "fzm" with the following components:

alpha value of the α parameter
A value of the A parameter
B value of the B parameter
C value of the normalisation constant C

C population size S predicted by the model
N number of observed tokens (if specified)
V number of observed types (if specified)
spc observed frequency spectrum (if specified)

This object prints a short summary, including the population size S and a comparison of the first
ranks of the observed and expected frequency spectrum (if available).

42 gam.helpers

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD
Thesis, IMS, University of Stuttgart.

Evert, Stefan (2004a). A simple LNRE model for random character sequences. In Proceedings of
JADT 2004, Louvain-la-Neuve, Belgium, pages 411–422.

See Also

zm, EV, EVm, VV, VVm, write.lexstats, lnre.goodness.of.fit, read.spectrum,
and spectrum.plot

gam.helpers Helper Functions for GAM Equations (gam)

Description

gam.yates and gam.yates.inv implement an invertible version of the discounting function
used by Yates’ correction. signed.sqrt, b.star, b.norm and e.bar are standard abbrevia-
tions used in the definition of generalised association measures in terms of ebo-coordinates.

Usage

gam.yates(d)
gam.yates.inv(d.corr)

signed.sqrt(x)

b.star(b)
b.norm(b)
e.bar(e, b, N)

Arguments

d difference between observed and expected frequency, to which the generalised
Yates’ correction is applied

d.corr difference between observed and expected frequency with generalised Yates’
correction applied, from which the original difference can uniquely be recon-
structed

x a vector of positive or negative real numbers

b a vector of balance (b) values in the ebo coordinate system

e a vector of expectation (e) values in the ebo coordinate system

N sample size N

gam.iso 43

Details

The standard discounting function for Yates’ correction is d∗ := d−1/2 for d ≥ 0 and d∗ := d+1/2
for d < 0, where d is the difference between observed and expected frequency. This definition
does not lead to a continuous and invertible function of d, so a GAM with Yates’ correction ap-
plied does not satisfy the soundness conditions. The generalised Yates’ correction implemented by
gam.yates and gam.yates.inv is a monotonic (and hence invertible) function that is identi-
cal to the standard discounting function for |d| ≥ 1 and uses linear interpolation for −1 < d < 1.

The functions signed.sqrt, b.star, b.norm and e.bar compute the standard abbreviation
±
√

x, b∗, ‖b‖ and ē (“e bar”) used by Evert (2004) for the definition of GAMs in terms of ebo-
coordinates.

Value

all functions return a vector of real numbers

References

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD
Thesis, IMS, University of Stuttgart.

Examples

d <- runif(20, -2, 2)
d.corr <- gam.yates(d)
all(d == gam.yates.inv(d.corr))

signed.sqrt(-4:4)

gam.iso Compute Iso-Surfaces for GAMs (gam)

Description

Computes iso-surfaces for a generalised association measure (GAM) in standard or ebo-coordinates.

Usage

gam.iso(name, gamma, f1, f2, N, bsearch.min=NULL, bsearch.max=NULL)
gam.iso(name, gamme, e, b=1, N=1e6, bsearch.min=NULL, bsearch.max=NULL)

Arguments

name name of a generalised association measure (GAM)

gamma a numerical constant that determines the desired iso-surface {g = γ}
f1, f2, N numerical vectors specifying the f1 and f2 coordinates of points in the standard

coordinate space, as well as the sample size N

e, b numerical vectors specifying the e and b coordinates of points in the ebo-
coordinate space (if the balance b is not specified, it defaults to 1)

N optional numerical vector specifying the sample size N when computing iso-
surfaces for a GAM that is not size-invariant in ebo-coordinates (defaults to
1e6)

44 gam.iso

bsearch.min initial lower boundary for binary search algorithm, when no explicit equation
for the iso-surface is available

bsearch.max initial upper boundary for the binary search algorithm

Details

Note that all function arguments except for name must be passed explicitly by name in order to
distinguish the two operating modes of gam.iso (standard vs. ebo-coordinates).

When ebo-coordinates are used, the argument N (sample size) can safely be omitted for any size-
invariant GAM (in ebo-coordinates). For other GAMs, a default value of 1e6 will be used, corre-
sponding to the typical size of a co-occurrence data set. The argument b (balance) can be omitted
for any central GAMs. Otherwise, it defaults to a value of 1, corresponding to the centralized
version of the respective GAM.

Use gamma.nbest to compute a suitable γ values for n-best surfaces.

When no explicit equation for the iso-surface of a GAM is available, the gam.iso function uses a
binary search algorithm to solve the implicit equation {g = γ}. Since some GAMs are only defined
for valid frequency signatures (where all four cells of the contingency table are non-negative), the
binary search for the o coordinate is confined to the range from 0 to min{f1, f2}. When no solution
can be found in this range, gam.iso returns NA for the corresponding points. For GAMs where it
is safe to search a larger range (notably Poisson.pv and log.likelihood), the boundaries
of the search interval can be adjusted with the bsearch.min and bsearch.max parameters.
Note that most other GAMs have explicit iso-equations, so these parameters are rarely needed.

Value

a vector of real numbers representing the f or o coordinates of the respective iso-surface; these are
the values of f or o that solve the implicit equation {g = γ} for the specified values of f1, f2,
N or e, b (and N); this vector may contain missing values (NA) for points where no solution is
found (see "Details" for more information)

See Also

gam.score, builtin.gams, gamma.nbest

Examples

e <- 10^seq(-2, 1, .1) # compute iso-line on logarithmic scale
o <- gam.iso("t.score", 2, e=e)

x <- 10^seq(0, 2, .1) # compute iso-surface over rectangular grid
g <- expand.grid(f1=x, f2=x)
g$f <- gam.iso("t.score", 2, f1=g$f1, f2=g$f2, N=1000)
library(lattice)
wireframe(f ~ f1 * f2, log(g))

gam.score 45

gam.score Compute GAM Scores in Standard or EBO-Coordinates (gam)

Description

Computes scores of a generalised association measure (GAM) in standard or ebo-coordinates.

Usage

gam.score(name, f, f1, f2, N)
gam.score(name, o, e, b=1, N=1e6)

Arguments

name name of a generalised association measure (GAM)

f, f1, f2, N numerical vectors specifying the (generalised) frequency signatures of candi-
dates

o, e, b numerical vectors specifying the ebo-coordinates of candidates (if the balance b
is not specified, it defaults to 1)

N optional numerical vector specifying the sample size N when computing scores
of a GAM that is not size-invariant in ebo-coordinates (defaults to 1e6)

Details

Note that all function arguments except for name must be passed explicitly by name in order to
distinguish the two operating modes of gam.score (standard vs. ebo-coordinates).

The components of the generalised frequency signature (f, f1, f2, N) can be arbitrary posi-
tive real numbers.

When ebo-coordinates are used, the argument N (sample size) can safely be omitted for any size-
invariant GAM (in ebo-coordinates). For other GAMs, a default value of 1e6 will be used, corre-
sponding to the typical size of a co-occurrence data set. The argument b (balance) can be omitted
for any central GAMs. Otherwise, it defaults to a value of 1, corresponding to the centralized
version of the respective GAM.

The gam.score function automatically converts between standard and ebo-coordinates, depend-
ing on the requirements of the GAM implementation.

Value

a vector of real numbers representing generalised association scores

See Also

add.gams, gam.iso, builtin.gams

Examples

gam.score("t.score", f=1:10, f1=(1:10)*5, f2=100, N=1000)

gam.score("t.score", o=1:10, e=(1:10)/2)

46 gamma.nbest

gamma.nbest Compute Gamma Threshold for N-Best Acceptance Region (gam)

Description

Computes a suitable value of γ such that the acceptance region {g ≥ γ} contains exactly n candi-
dates from a given data set.

Usage

gamma.nbest(ds, name, n, jitter=FALSE)

Arguments

ds a UCS data set object

name name of a generalised association measure (GAM)

n an integer, specifying the number of candidates to be included in the acceptance
region

jitter if TRUE, random jitter is added to the coordinates of candidates for computation
of the n-best threshold

Details

When jitter=TRUE, the data set ds must contain jitter vectors stored in special variables. Such
jitter variables can easily be added with the add.jitter function.

Value

a real number specifying a suitable threshold γ, i.e. the data set ds contains exactly n candidates
with a GAM score g ≥ γ (for the specified measure name)

See Also

add.jitter, gam.score, add.gams, gam.iso, builtin.gams

Examples

e <- 10^seq(-2, 1, .1) # 100-best iso-line for UCS data set ds
gamma <- gamma.nbest(ds, "t.score", 100)
o <- gam.iso("t.score", gamma, e=e)

iaa.kappa 47

iaa.kappa Inter-Annotator Agreement: Cohen’s Kappa (iaa)

Description

Compute the kappa statistic (Cohen, 1960) as a measure of intercoder agreement on a binary vari-
able between two annotators, as well as a confidence interval according to Fleiss, Cohen & Everitt
(1969). The data can either be given in the form of a 2 × 2 contingency table or as two parallel
annotation vectors.

Usage

iaa.kappa(x, y=NULL, conf.level=0.95)

Arguments

x either a 2× 2 contingency table in matrix form, or a vector of logicals
y a vector of logicals; ignored if x is a matrix
conf.level confidence level of the returned confidence interval (default: 0.95, correspond-

ing to 95% confidence)

Value

A data frame with a single row and the following variables:

kappa sample estimate for the kappa statistic
sd sample estimate for the standard deviation of the kappa statistic
kappa.min, kappa.max

two-sided asymptotic confidence interval for the “true” kappa, based on normal
approximation with estimated variance

The single-row data frame was chosen as a return structure because it prints nicely, and results
from different comparisons can easily be combined with rbind.

References

Cohen, Jacob (1960). A coefficient of agreement for nominal scales. Educational and Psychologi-
cal Measurement, 20, 37–46.

Fleiss, Joseph L.; Cohen, Jacob; Everitt, B. S. (1969). Large sample standard errors of kappa and
weighted kappa. Psychological Bulletin, 72(5), 323–327.

See Also

iaa.pta

Examples

kappa should be close to zero for random codings
p <- 0.1 # proportion of true positives
x <- runif(1000) < p # 1000 candidates annotated randomly
y <- runif(1000) < p
iaa.kappa(x, y)

48 iaa.pta

iaa.pta Inter-Annotator Agreement: Estimates for the Proportion of True
Agreement (iaa)

Description

Compute confidence interval estimates for the proportion of true agreement between two annotators
on a binary variable, as described by Krenn, Evert & Zinsmeister (2004). iaa.pta.conservative
computes a conservative estimate that is rarely useful, while iaa.pta.homogeneous relies on
additional assumptions. The data can either be given in the form of a 2× 2 contingency table or as
two parallel annotation vectors.

Usage

iaa.pta.conservative(x, y=NULL, conf.level=0.95, debug=FALSE)

iaa.pta.homogeneous(x, y=NULL, conf.level=0.95, debug=FALSE)

Arguments

x either a 2× 2 contingency table in matrix form, or a vector of logicals

y a vector of logicals; ignored if x is a matrix

conf.level confidence level of the returned confidence interval (default: 0.95, correspond-
ing to 95% confidence)

debug if TRUE, show which divisions of the data are considered when computing the
confidence interval (see Krenn, Evert & Zinsmeister, 2004)

Details

This approach to measuring intercoder agreement is based on the assumption that the observed
surface agreement in the data can be divided into true agreement (i.e. candidates where both
annotators make the same choice for the same reasons) and chance agreement (i.e. candidates
on which the annotators agree purely by coincidence). The goal is to estimate the proportion of
candidates for which there is true agreement between the annotators, referred to as PTA.

The two functions differ in how they compute this estimate. iaa.pta.conservative consid-
ers all possible divisions of the observed data into true and chance agreement, leading to a conser-
vative confidence interval. This interval is almost always too large to be of any practical value.

iaa.pta.homogeneous makes the additional assumption that the average proportion of true
positives is the same for the part of the data where the annotators reach true agreement and for the
part where they agree only by chance. Note that there is no a priori reason why this should be the
case. Interestingly, the confidence intervals obtained in this way for the PTA correspond closely to
those for Cohen’s kappa statistic (iaa.kappa).

Value

A numeric vector giving the lower and upper bound of a confidence interval for the proportion of
true agreement (both in the range [0, 1]).

lnre.goodness.of.fit 49

Note

iaa.pta.conservative is a computationally expensive operation based on Fisher’s exact test.
(It doesn’t use fisher.test, though. If it did, it would be even slower than it is now.) In most
circumstances, you will want to use iaa.pta.homogeneous instead.

References

Krenn, Brigitte; Evert, Stefan; Zinsmeister, Heike (2004). Determining intercoder agreement for a
collocation identification task. In preparation.

See Also

iaa.kappa

Examples

how well do the confidence intervals match the true PTA?
true.agreement <- 700 # 700 cases of true agreement
chance <- 300 # 300 cases where annotations are independent
p <- 0.1 # average proportion of true positives
z <- runif(true.agreement) < p # candidates with true agreement
x.r <- runif(chance) < p # randomly annotated candidates
y.r <- runif(chance) < p
x <- c(z, x.r)
y <- c(z, y.r)
cat("True PTA =", true.agreement / (true.agreement + chance), "\n")
iaa.pta.conservative(x, y) # conservative estimate
iaa.pta.homogeneous(x, y) # estimate with homogeneity assumption

lnre.goodness.of.fit
Perform Goodness-of-Fit Evaluation of LNRE Model

Description

Evaluate the goodness-of-fit of a LNRE model with a multivariate chi-squared test (Baayen, 2001,
Sec. 3.3).

Usage

lnre.goodness.of.fit(model, m.max=15)

Arguments

model an object representing a LNRE model whose parameters have been estimated
from observed word frequency data. Currently, the Zipf-Mandelbrot (ZM, class
"zm") and the finite Zipf-Mandelbrot (fZM, class "fzm") models are sup-
ported.

m.max highest frequency rank to be included in the evaluation (limited by the number
of ranks stored in the model object).

50 order.by.am

Details

This function performs a multivariate chi-squared test to evaluate the goodness-of-fit of an LNRE
model (Baayen 2001, p. 119-122).

All LNRE models that follow the UCS/R conventions are supported. In particular, they must specify
the number of parameters estimated from the observed data (in the n.param component), and they
must provide appropriate implementations of the EV, EVm, and VV methods. Currently available
LNRE models are objects of class "zm" or "fzm". The model object must include observed
frequency data (in components N, V, and spc), which is usually achieved by estimating the model
parameters from the observed frequency spectrum.

Value

A data frame with one row and three columns:

X2 the value of the multi-variate χ2 test statistic
df the degrees of freedom of the approximate χ2 distribution of the test statistic

under the null hypothesis
p the p-value for the test

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

See Also

zm, fzm

order.by.am Sort Rows of a Data Set by Association Scores (base)

Description

Sort the rows of a data set according to the annotated scores of an association measure (in descend-
ing order). Ties in the ordering are broken randomly by default, using the random association
measure to yield a reproducible ordering.

Usage

order.by.am(ds, am, randomise=TRUE)

Details

With randomise=TRUE, the data set must contain a variable named am.random, which is used
to break ties in the ordering. Otherwise, tied rows are arranged according to their ID values, and the
corresponding id variable must be annotated in the data set.

The random association measure is used for breaking ties (rather than random numbers generated
on the fly) in order to ensure that the ordering is reproducible. If this measure has not been annotated
in a data set file, you can easily add the required variable to a data set ds with the command

ds$am.random <- runif(nrow(ds))

You should probably use set.seed to ensure a reproducible ordering.

precision.recall 51

Value

an integer vector of row numbers, which can be used as a row index for the data set object

See Also

read.ds.gz, add.ranks

precision.recall Compute Precision and Recall for N-Best Lists (base)

Description

Computes precision and recall of n-best lists for a UCS data set annotated with true positives and
rankings (based on association scores). This function forms the basis for the evaluation graphs in
the plots packages.

Usage

precision.recall(ds, am, tp=ds$b.TP, step=1, first=1, cut=0, window=0)

Arguments

ds a UCS data set object

am a character string giving the name of an association measure. The correspond-
ing ranking must be annotated in the data set (usually with the add.ranks
function).

tp a logical vector, which must be parallel to the rows of the data set. TRUE values
indicate true positives (see details below for the use of missing values). If tp
is omitted, the data set must contain a Boolean variable b.TP which is used
instead.

step step width for n-best lists considered, i.e. precision and recall are computed for
every step-th value of n only (default: 1)

first smallest n-best list for which precision and recall are computed (default: 1)

cut pretend that data set consists only of the first cut rows in the ranking, i.e. treat
cut-best list as full data set (for percentage and recall).

window if specified, local precision is estimated, considering a window of approximately
the given size around each value of n (uses the density function for smooth-
ing). Useful window sizes range from 400 to 1000.

Details

The precision.recall function supports evaluation based on random samples (cf. Evert,
2004, Sec. 5.4). Any NA values in the tp parameter (or the b.TP variable) are interpreted as unan-
notated candidates. Precision and recall values are computed from the annotated candidates only
(as are the tp, fp, and lp variables in the returned data frame). For a random sample evaluation,
confidence intervals should always be supplied with the raw precision values, and result differ-
ences should be tested for significance. Such tests are implemented by the evaluation.plot
function, for instance.

52 read.ds.gz

Value

An invisible data frame with rows corresponding to n-best lists and the following variables:

n the number of candidates in the n-best list

perc the same as a percentage of the full data set (or the cut highest-ranking candi-
dates if specified)

tp the number of true positives in the n-best list

fp the number of false positives in the n-best list

precision the precision of the n-best list, i.e. the number of TPs divided by n

recall the recall of the n-best list, i.e. the number of TPs divided by the total number
of TPs in the data set

lp if window is specified, an estimate for the local precision, i.e. the density of
TPs in the vicinity of the n-th rank. Averages over a symmetric window of
approximately the specified total size by convolution with a Gaussian kernel
(using the density function).

References

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD
Thesis, IMS, University of Stuttgart.

See Also

add.ranks, read.ds.gz, evaluation.plot

read.ds.gz Load UCS data set file (base)

Description

Load a UCS data set file, which is uncompressed on the fly if necessary.

Usage

read.ds.gz(filename)

Arguments

filename name, partial or full path of the data set file to be loaded.

Details

When the specified file is not found in the current directory, it is automatically searched in the stan-
dard UCS data library (the ‘DataSet/’ directory and its subdirectories). Should there be multiple
matches, a warning is issued and the first match is used. You may specify partial paths to iden-
tify the desired file unambiguously (e.g. "Distrib/dickens.ds.gz"). The automatic search
facility is suppressed when filename is an explicit absolute or relative path (starting with / or
./).

gzip-compressed data set files, whose name must end in .gz, are automagically decompressed.

read.spectrum 53

Value

A data frame with column names (i.e. variables) corresponding to those in the data set file. l1
and l2 are read as character vectors, all other string variables (f.*) are converted into factors, and
Boolean variables (b.*) are converted into logicals.

Any comments and global variables in the file header are discarded.

Examples

load GLAW data set from UCS distribution
GLAW <- read.ds.gz("glaw.ds.gz")

read.spectrum Read Frequency Spectrum File (lexstats)

Description

Read a word frequency spectrum from a .spc file in lexstats format (see Baayen, 2001). Re-
turns spectrum as integer vector, possibly including zeroes, whose m-th element gives the number
of types Vm with frequency rank m. Also computes sample size N and vocabulary size V .

Usage

read.spectrum(file, m.max=Inf, expected=FALSE)

Arguments

file a character string giving the name of a frequency spectrum file in lexstats
format (usually with the extension .spc)

m.max maximum length of frequency spectrum, i.e. frequency ranks m > mmax are
discarded. Setting m.max is a good idea if there are high-frequency types, so
that the spectrum is sparse. For most applications, only the first 10 to 100 ranks
are of interest.

expected if TRUE, reads expected class sizes (in the EVm column) rather than the observed
ones (in the Vm column). This is only possible when the .spc file was generated
by a LNRE model, of course.

Value

A list with the following components:

spc an integer vector containing the class sizes Vm

N the sample size computed from the spectrum

V the vocabulary size computed from the spectrum

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

See Also

spectrum.plot, zm, fzm

54 spectrum.plot

spectrum.plot Comparative Plot of Word Frequency Spectra (lexstats)

Description

Comparative plot of up to five word frequency spectra (see Baayen, 2001), either as a side-by-side
barplot or as points and lines on a logarithmic scale.

Usage

spectrum.plot(spc, m.max=Inf, log=FALSE, y.min=100, y.max=0,
xlab="m", ylab="V_m / E[V_m]",
legend=NULL,
pch=c(1, 3, 15, 2, 20),
lwd=1,
lty=c("solid", "dashed", "dotdash", "dotted", "twodash"),
col=if (log) c("black") else c("black", "grey50", ...))

Arguments

spc a list containing up to five frequency spectrum vectors. Such spectrum vectors
can be read in from a file in lexstats format with read.spectrum or
generated by a ZM or fZM model with the EVm method.

m.max number of frequency ranks to be shown in plot. If unspecified, it is determined
by the shortest spectrum vector in spc.

log if TRUE, display frequency spectra as points and lines on a logarithmic scale. If
FALSE, display spectra as side-by-side barplot on a linear scale (default). The
latter is only useful when m.max is comparatively small.

y.min, y.max range of y-axis. y.max is automatically computed to fit the data in spc.
y.min is only used when log=TRUE and defaults to 100.

legend a vector of character strings or expressions specifying the labels to be shown in
a legend box. If legend is missing, no legend box will be displayed.

xlab, ylab character strings giving labels for the x-axis and y-axis
pch, lwd, lty

vectors of plot symbols, line widths, and line types (only used if log=TRUE.
Values are recycled if necessary. See the par manpage for possible ways of
specifying these attributes.

col a vector of colours for the lines (log=TRUE) or bars (log=FALSE) in the plot.
Values are recycled if necessary. Colours are specified as described in the par
manpage.

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

See Also

read.spectrum, zm, fzm, EVm

ucs.library 55

ucs.library Load UCS/R Modules

Description

Since the UCS/R functions are imported into the global namespace, they are collected in various
modules that can be loaded separately on demand. ucs.library loads a specified module. When
called without arguments, it prints a listing of available modules.

Usage

ucs.library(name, all=FALSE, reload=FALSE)

Arguments

name a character string giving the name of a single UCS/R module to be loaded. If
omitted, a list of all available modules is displayed (see below).

all if TRUE, all available modules are loaded

reload if TRUE, force module to be loaded even if it has already been imported (useful
when developing UCS/R modules)

Details

Like the library and package functions, ucs.library(module) checks whether the re-
quested module has already been loaded by a previous ucs.library call. Set reload=TRUE
in order to skip this test and force re-loading a module (especially while developing or debugging
module code).

Value

Calling the ucs.library function without arguments returns a list of all available UCS/R mod-
ules as an object of class "UCSLibList", which prints as a nicely formatted listing including
one-line descriptions. Use names(ucs.library()) to obtain a plain vector of module names.

See Also

UCS for an overview of the UCS/R modules

Examples

print(ucs.library()) # list of available modules

ucs.library("base") # load and manage UCS data sets
ucs.library("plots") # evaluation graphs

ucs.library(all=TRUE) # load all modules

56 ucs.par

ucs.par Graphics Parameters for Evaluation Graphs (plots)

Description

Set default graphics parameters for the evaluation.plot function, similar to par for general
graphics parameters. The current parameter values are queried by giving their names as character
strings. The values can be set by specifying them as arguments in name=value form, or by
passing a single list of named values.

Usage

ucs.par(...)

.ucs.PAR

Arguments

... either character strings (or vectors) specifying the names of parameters to be
queried, or parameters to be set in name=value form, or a single list of named
values. Valid parameter names are described below.

Details

The current default parameters are stored in the global variable .ucs.PAR. They can be queried
by giving their names as one or more character vectors to ucs.par. ucs.par() (no arguments)
returns all UCS graphics parameters.

Parameters are set by specifying their names and the new values as name=value pairs. Such a list
can also be passed as a single argument to ucs.par, which is typically used to restore previous
parameter values (that have been saved in a list variable).

In order to restore the "factory settings", reload the module with the command ucs.library("plots",
reload=TRUE).

Value

When parameters are set, their former values are returned in an invisible named list. Such a list can
be passed as a single argument to ucs.par to restore the parameter values.

When a single parameter is queried, its value is returned directly. When two or more parameters are
queried, the result is a named list.

Note the inconsistency, which is the same as for par: setting one parameter returns a list, but
querying one parameter returns a vector (or a scalar, i.e. a vector of length 1).

UCS Graphics Parameters

col A character or integer vector specifying line colours for up to 10 evaluation graphs (see the
par manpage for details). Values are recycled if necessary.

lty A character or integer vector specifying line styles for up to 10 evaluation graphs (see the par
manpage for details). Values are recycled if necessary.

lwd A numeric vector specifying line widths for up to 10 evaluation graphs (see the par manpage
for details). Values are recycled if necessary.

write.lexstats 57

bw.col The line colours used in B/W mode (see the evaluation.plot manpage for details).

bw.lty The line styles used in B/W mode.

bw.lwd The line widths in B/W mode.

n.first The smallest n-best list to be evaluated (default: 100). Shorter n-best lists typically lead
to highly unstable evaluation graphs. It may be necessary to set n.first to a higher value
for evaluation based on random samples (cf. evaluation.plot).

n.step The step width for n-best lists in evaluation graphs (default: 1). The default setting
evaluates all possible n-best lists. Higher values speed up computation, make graphs look less
jagged, and reduce the size of PostScript files. A useful range is 5 . . . 20, depending on the
size of the data set file.

test.step Step width for n-best lists where significance tests for result differences are applied,
as a multiple of n.step (default: 10). Since these tests are time-consuming and significant
differences are indicated by fairly large symbols in the plot, values below 5 are rarely useful.

cex A character expansion factor for labels, annotations, and symbols in evaluation plots (see par
for details).

lex This parameter can be used to increase the line widths of evaluation graphs and some deco-
rations. Not that lex is not an expansion factor, but is simply added to all line widths in the
plot.

do.file If FALSE, evaluation.file will not generate PostScript files, which is useful
while testing and fine-tuning plots (default: TRUE).

See Also

evaluation.plot, evaluation.file, par

Examples

print(names(ucs.par())) # list available parameters

ucs.par("col", "lty", "lwd") # the default line styles
ucs.par(c("col", "lty", "lwd")) # works as well

temporary changes to graphics paramters:
par.save <- ucs.par(n.first=200, n.step=5)
plots use the modified parameters here
ucs.par(par.save) # restore previous values

ucs.library("plots", reload=TRUE) # reload module for factory defaults

write.lexstats Write Data Files for Goodness-of-Fit Evaluation of LNRE Model (zm,
fzm)

Description

Creates three data files in lexstats format, which can be used to compare and LNRE model
with other models from the lexstats package and evaluate its goodness-of-fit by a multivariate
chi-squared test (Baayen, 2001, Sec. 3.3), using the lnreChi2 program (Baayen, 2001).

58 zm

Usage

write.lexstats(model, file)

Arguments

model an object of class "zm" or "fzm", representing a Zipf-Mandelbrot (ZM) or
finite Zipf-Mandelbrot (fZM) LNRE model. The object must include observed
word frequency data (in components N, V, and spc), usually because the model
parameters have been estimated from the observed frequency spectrum.

file a character string giving the basename of the files that will be created

Details

This functions creates files in lexstats format with the extensions .spc, .sp2, and .ev2,
which are required by the lnreChi2 tool (Baayen, 2001, 270).

In addition, the basename file is extended with the string "_bZM" (for a ZM model) or "_bfZM"
(for a fZM model), so that the lnreChi2 tool can correctly identify the number of degrees of
freedom (reduced by two estimated parameters for the ZM model, and three estimated parameters
for the fZM model).

Value

The full basename of the created files (obtained by adding a model-specific suffix to the file
parameter).

Note

The combination of write.lexstats and the external lnreChi2 program to evaluate the
goodness-of-fit of a LNRE model has been superseded by the built-in lnre.goodness.of.fit
function (in the lexstats module). This function implements the multivariate chi-squared test as
described by Baayen (2001, Sec. 3.3) in R without relying on external software.

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

See Also

zm, fzm, EV, EVm, lnre.goodness.of.fit

zm The Zipf-Mandelbrot LNRE Model (zm)

Description

Object constructor for a Zipf-Mandelbrot (ZM) LNRE model with parameters α and C (Evert,
2004a). Either the parameters are specified explicitly, or one or both of them can be estimated from
an observed frequency spectrum.

zm 59

Usage

zm(alpha, C)

zm(alpha, N, V)

zm(N, V, spc, m.max=15, stepmax=10, debug=FALSE)

Arguments

alpha a number in the range (0, 1), the shape parameter α of the ZM model. alpha
can automatically be estimated from N, V, and spc.

C a positive number, the parameter C of the ZM model. C can automatically be
estimated from N and V.

N the sample size, i.e. number of observed tokens

V the vocabulary size, i.e. the number of observed types

spc a vector of non-negative integers representing the class sizes Vm of the observed
frequency spectrum. The vector is usually read from a file in lexstats format
with the read.spectrum function.

m.max the number of ranks from spc that will be used to estimate the α parameter

stepmax maximal step size of the nlm function used for parameter estimation. It should
not be necessary to change the default value.

debug if TRUE, print debugging information during the parameter estimation process.
This feature can be useful to find out why parameter estimation fails.

Details

The ZM model with parameters α ∈ (0, 1) and C > 0 is defined by the type density function

g(π) := C · π−α−1

for 0 ≤ π ≤ B, where the upper bound B is determined from C by the normalisation condition∫ ∞

0

π · g(π)dπ = 1

The parameter α is estimated by nonlinear minimisation (nlm) of a multinomial chi-squared statis-
tic for the observed against the expected frequency spectrum. Note that this is different from the
multivariate chi-squared test used to measure the goodness-of-fit of the final model (Baayen, 2001,
Sec. 3.3).

See Evert (2004, Ch. 4) for further mathematical details, especially concerning the expected vocab-
ulary size, frequency spectrum and conditional parameter distribution, as well as their variances.

Value

An object of class "zm" with the following components:

alpha value of the α parameter

B value of the upper bound B (a normalisation device)

C value of the C parameter

N number of observed tokens (if specified)

60 zm

V number of observed types (if specified)

spc observed frequency spectrum (if specified)

This object prints a short summary, including a comparison of the first ranks of the observed and
expected frequency spectrum (if available).

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD
Thesis, IMS, University of Stuttgart.

Evert, Stefan (2004a). A simple LNRE model for random character sequences. In Proceedings of
JADT 2004, Louvain-la-Neuve, Belgium, pages 411–422.

See Also

fzm, EV, EVm, VV, VVm, write.lexstats, lnre.goodness.of.fit, read.spectrum,
and spectrum.plot

Index

∗Topic GAM
add.gams, 13
add.jitter, 14
builtin.gams, 18
gam.helpers, 41
gam.iso, 42
gam.score, 44
gamma.nbest, 45

∗Topic LNRE
EV, 3
EVm, 3
fzm, 39
lnre.goodness.of.fit, 48
read.spectrum, 52
spectrum.plot, 53
VV, 11
VVm, 12
write.lexstats, 56
zm, 57

∗Topic UCS
add.gams, 13
add.jitter, 14
add.ranks, 15
am.key2var, 16
binom.conf.interval, 17
builtin.ams, 18
builtin.gams, 18
Cbeta, 1
Cgamma, 2
ds.find.am, 20
eo.iso, 21
eo.iso.diff, 23
eo.legend, 25
eo.mark, 26
eo.par, 27
eo.points, 30
eo.setup, 31
EV, 3
evaluation.file, 33
evaluation.plot, 34
evaluation.table, 38
EVm, 3
fzm, 39

gam.helpers, 41
gam.iso, 42
gam.score, 44
gamma.nbest, 45
iaa.kappa, 46
iaa.pta, 47
Ibeta, 5
Igamma, 6
lnre.goodness.of.fit, 48
order.by.am, 49
precision.recall, 50
Rbeta, 7
read.ds.gz, 51
read.spectrum, 52
Rgamma, 8
spectrum.plot, 53
UCS, 9
ucs.library, 54
ucs.par, 55
VV, 11
VVm, 12
write.lexstats, 56
zm, 57

∗Topic hplot
eo.iso, 21
eo.iso.diff, 23
eo.legend, 25
eo.mark, 26
eo.points, 30
eo.setup, 31
evaluation.file, 33
evaluation.plot, 34
spectrum.plot, 53

∗Topic htest
binom.conf.interval, 17
iaa.kappa, 46
iaa.pta, 47

∗Topic iplot
eo.par, 27
ucs.par, 55

∗Topic math
add.gams, 13
add.jitter, 14

61

62 INDEX

builtin.gams, 18
Cbeta, 1
Cgamma, 2
gam.helpers, 41
gam.iso, 42
gam.score, 44
gamma.nbest, 45
Ibeta, 5
Igamma, 6
Rbeta, 7
Rgamma, 8

∗Topic models
EV, 3
EVm, 3
fzm, 39
lnre.goodness.of.fit, 48
VV, 11
VVm, 12
write.lexstats, 56
zm, 57

∗Topic univar
precision.recall, 50

∗Topic utilities
UCS, 9
ucs.library, 54

.eo.PAR (eo.par), 27

.ucs.PAR (ucs.par), 55

add.ebo, 10
add.ebo (add.jitter), 14
add.gams, 10, 13, 14, 19, 44, 45
add.jitter, 10, 13, 14, 45
add.ranks, 9, 13, 15, 34, 39, 50, 51
am.in.ds (ds.find.am), 20
am.key2desc (builtin.ams), 18
am.key2var, 9, 15, 16
am.var2key (am.key2var), 16

b.norm (gam.helpers), 41
b.star (gam.helpers), 41
binom.conf.interval, 9, 17
builtin.ams, 9, 16, 18, 19
builtin.gams, 10, 13, 18, 43–45

Cbeta, 1, 2, 5–9
Cgamma, 2, 2, 5–9

ds.find.am, 9, 15, 20, 34, 39
ds.match.am (ds.find.am), 20

e.bar (gam.helpers), 41
eo.close (eo.setup), 31
eo.iso, 10, 21, 24, 26, 29, 32

eo.iso.diff, 10, 22, 23, 26, 29, 32
eo.legend, 10, 25, 29, 32
eo.mark, 10, 26, 32
eo.par, 10, 22–26, 27, 27, 30, 32
eo.points, 10, 26, 27, 29, 30, 32
eo.setup, 10, 22, 24, 26, 27, 29, 30, 31
EV, 3, 10–13, 41, 57, 59
evaluation.file, 33, 36, 38, 56
evaluation.plot, 10, 33, 34, 39, 50, 51,

56
evaluation.table, 10, 38
EVm, 3, 3, 4, 10, 12, 13, 41, 53, 57, 59

fzm, 3, 4, 10, 12, 13, 39, 49, 52, 53, 57, 59

gam.helpers, 10, 19, 41
gam.iso, 10, 13, 19, 42, 44, 45
gam.score, 10, 13, 19, 43, 44, 45
gam.yates (gam.helpers), 41
gamma.nbest, 10, 14, 43, 45

has.jitter (add.jitter), 14

iaa.kappa, 10, 46, 47, 48
iaa.pta, 10, 46, 47
Ibeta, 2, 5, 6–9
Igamma, 2, 5, 6, 7–9
is.builtin.am (builtin.ams), 18
is.builtin.gam (builtin.gams), 18
is.valid.key (am.key2var), 16

lnre.goodness.of.fit, 10, 41, 48, 57,
59

order.by.am, 9, 15, 49

par, 29
points, 29
precision.plot (evaluation.plot),

34
precision.recall, 9, 36, 38, 39, 50

Rbeta, 2, 5, 6, 7, 8, 9
read.ds.gz, 9, 15, 20, 34, 38, 39, 50, 51, 51
read.spectrum, 10, 40, 41, 52, 53, 58, 59
recall.plot (evaluation.plot), 34
recall.precision.plot

(evaluation.plot), 34
register.gam, 10
register.gam (builtin.gams), 18
Rgamma, 2, 5–7, 8, 9

signed.sqrt (gam.helpers), 41
spectrum.plot, 10, 41, 52, 53, 59

INDEX 63

UCS, 9, 54
ucs (UCS), 9
ucs.library, 9, 11, 54
ucs.par, 10, 29, 33, 35–38, 55

VV, 3, 4, 10, 11, 41, 59
VVm, 3, 4, 10, 12, 12, 13, 41, 59

write.lexstats, 10, 41, 56, 59

zm, 3, 4, 10, 12, 13, 41, 49, 52, 53, 57, 57

	Cbeta
	Cgamma
	EV
	EVm
	Ibeta
	Igamma
	Rbeta
	Rgamma
	UCS
	VV
	VVm
	add.gams
	add.jitter
	add.ranks
	am.key2var
	binom.conf.interval
	builtin.ams
	builtin.gams
	ds.find.am
	eo.iso
	eo.iso.diff
	eo.legend
	eo.mark
	eo.par
	eo.points
	eo.setup
	evaluation.file
	evaluation.plot
	evaluation.table
	fzm
	gam.helpers
	gam.iso
	gam.score
	gamma.nbest
	iaa.kappa
	iaa.pta
	lnre.goodness.of.fit
	order.by.am
	precision.recall
	read.ds.gz
	read.spectrum
	spectrum.plot
	ucs.library
	ucs.par
	write.lexstats
	zm
	Index

