
UCS/Perl Documentation

Stefan Evert

printed on June 4, 2006

Contents

1 General Documentation 2
1.1 ucsintro . 2
1.2 ucsfile . 4
1.3 ucsexp . 8
1.4 ucsam . 12

2 UCS/Perl Programs 16
2.1 ucsdoc . 16
2.2 ucs-config . 17
2.3 ucs-tool . 18
2.4 ucs-list-am . 20
2.5 ucs-make-tables . 21
2.6 ucs-summarize . 24
2.7 ucs-select . 25
2.8 ucs-add . 26
2.9 ucs-join . 28
2.10 ucs-sort . 30
2.11 ucs-info . 31
2.12 ucs-print . 32

3 UCS/Perl Modules 34
3.1 UCS . 34
3.2 UCS::File . 38
3.3 UCS::R . 42
3.4 UCS::R::Expect . 44
3.5 UCS::R::RSPerl . 45
3.6 UCS::SFunc . 46
3.7 UCS::Expression . 51
3.8 UCS::Expression::Func . 54
3.9 UCS::AM . 55
3.10 UCS::AM::HTest . 59
3.11 UCS::AM::Parametric . 62
3.12 UCS::DS . 64
3.13 UCS::DS::Stream . 67
3.14 UCS::DS::Memory . 71
3.15 UCS::DS::Format . 79
3.16 UCS::Mathlibs . 81

1

1 General Documentation

1.1 ucsintro

A first introduction to UCS/Perl

INTRODUCTION

UCS is a set of libraries and tools intended for the empirical study of cooccurrence statistics.
Its major uses are to apply such statistics, called association measures, to cooccurrence data
obtained from a corpus, and to evaluate the resulting association scores and rankings against
(manually annotated) reference data.

The frequency data extracted from a given corpus for a given type of cooccurrences consists of
a list of pair types with their frequency signatures (i.e. joint and marginal frequencies), and is
referred to as a data set. See (Evert 2004) for a detailed explanation of these concepts, different
types of cooccurrences, and correct methods for obtaining frequency data. Data sets, stored in
a special .ds file format, are the fundamental objects of the UCS toolkit. Most UCS programs
manipulate or display such data set files.

The UCS implementation relies heavily on the programming language Perl
(http://www.perl.com/) and the free statistical environment R (http://www.r-project.org/)
as a library of mathematical and statistical functions. The core of UCS is written in Perl (the
UCS/Perl part), but there is also a small library of R functions for interactive work within
R (the UCS/R part). UCS/Perl uses R as a back-end, making the most important statistical
functions available through a Perl module.

UCS/Perl is mainly a collection of Perl modules that perform the following tasks:

• read and write data set files (.ds, .ds.gz)

• manage in-memory representations of data sets

• compile UCS expressions for easy access to data set variables

• filter, annotate, sort, and analyse data sets

• provide a repository of built-in association measures

• display data sets and evaluation graphs (Perl/Tk and R) [not implemented yet]

Most UCS programs will be custom-built scripts, using the library of support functions provided
by the UCS/Perl modules. Loading a data set, annotating it with association scores from one or
more measures, and sorting it in various ways can be done with a few lines of Perl code. There are
also some ready-made programs in UCS/Perl that perform such standard tasks, operating on data
set files. A substantial part of the UCS/Perl functionality is thus accessible from the command-line,
at the cost of some additional overhead compared to a custom script (which operates on in-memory
representations).

Below, you will find a list of the general documentation files, Perl modules, and programs that
are included in the UCS/Perl distribution. Manpages for all modules and programs (as well as the
general documentation) are easily accessible with the ucsdoc program, and can also be formatted
for printing.

General Documents

ucsdoc ucsintro # this introduction

ucsdoc ucsfile # description of the UCS data set file format (.ds)

ucsdoc ucsexp # UCS expressions and wildcards

ucsdoc ucsam # overview of built-in association measures

2

UCS/Perl MODULES

use UCS; # core library

use UCS::File; # file access utilities

use UCS::R; # interface to UCS/R

use UCS::SFunc; # special functions and statistical distributions

use UCS::Expression; # Perl code interspersed with UCS variables

use UCS::Expression::Func; # utility functions available in UCS expressions

use UCS::AM; # implementations of various association measures

use UCS::AM::HTest; # add-on package: variants of hypothesis tests

use UCS::AM::Parametric; # add-on package: parametric association measures

use UCS::DS; # data sets ...

use UCS::DS::Stream; # i/o streams for data set files

use UCS::DS::Memory; # in-memory representation of data sets

use UCS::DS::Format; # ASCII formatter (+ other formats)

See the respective manpages (ucsdoc ModuleName) for more information.

UCS/Perl PROGRAMS

ucsdoc # front-end to perldoc

ucs-config # automatic configuration of UCS/Perl scripts

ucs-tool # find and run user-contributed UCS/Perl scripts

ucs-list-am # list built-in association measures & add-on packages

ucs-make-tables # compute frequency signatures from list of pair tokens

ucs-summarize # print (statistical) summaries for selected variables

ucs-select # select rows and/or columns from a data set file

ucs-add # add variables to a data set file

ucs-join # combine rows and/or columns from two data sets

ucs-sort # sort data set file by specified attribute(s)

ucs-info # display information from header of data set file

ucs-print # format data set as ASCII table (for viewing and printing)

See the respective manpages (ucsdoc ProgramName) for more information.

TRIVIA

UCS stands for Utilities for Cooccurrence Statistics.

REFERENCES

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD
Thesis, University of Stuttgart, Germany.

On-line repository of association measures: http://www.collocations.de/

COPYRIGHT

Copyright (C) 2004 by Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

3

1.2 ucsfile

The UCS data set file format

INTRODUCTION

UCS data sets are stored in a simple tabular format, similar to that of a statistical table. Each
row in the table corresponds to a pair type, and its individual fields (columns) provide various
kinds of information about the pair type:

• a unique ID number (unique within the data set)

• the component lexemes

• the pair type’s frequency signature

• [optional] contingency tables of observed and expected frequencies computed from the
frequency signature

• [optional] coordinates computed from the frequency signature

• association scores and rankings for various association measures

• arbitrary user-defined attributes, especially for the manual annotation of true positives
in an evaluation study

Following statistical terminology, the table columns are referred to as the variables of a data
set (each of which assumes a specific value for each pair type). Columns are separated by a TAB
character ("\t"), and the first row lists the variable names as table headings (see the section
§1.2 below for naming conventions).

The actual data table may be preceded by an optional header of Perl-style comment lines
(beginning with a # character). Lines with the special format

##:: <variable> = <value>

define global variables, which may be interpreted by some of the UCS/Perl programs (see the
section §1.2 below). The variable name (variable) may only contain alphanumeric characters (A-Z
a-z 0-9) and the period (.). The value may contain arbitrary characters, including whitespace
(but leading and trailing whitespace will be ignored). Variable definitions must not span multiple
lines.

UCS data set files must have the filename extension .ds. They may be compressed with gzip
(and they usually are), in which case they carry the extension .ds.gz. UCS library functions will
automatically recognise and uncompress data set files with this extension.

A special subtype of data sets are the annotation database files with extension .adb (un-
compressed) or .adb.gz (compressed). Annotation databases omit all frequency information and
association scores, listing only component lexemes and user-defined attributes. They are used
as repositories of lexical information (such as manually annotated true positives for evaluation
purposes) that applies to data sets extracted from different corpora (or with different methods).

GLOBAL VARIABLES

size number of pair types in a data set

The only global variable that is currently supported is size, an integer specifying the number
of pair types in a data set. Availability of the data set size in the header may give a slight
performance improvement when loading data set files into memory. If size is set to an incorrect
value, the behaviour of UCS/Perl programs and modules is undefined.

A global variable whose name is identical to that of a variable defined in the data set (i.e. a
table column) is interpreted as an explanatory note. Such notes should typically be given for all
user-defined variables, and also for user-defined association measures.

Unsupported variables will simply be ignored and will not raise errors or warnings when a data
set file is parsed.

4

DATA TYPES

The UCS system supports four different data types:

BOOL a logical (Boolean) value
INT a signed integer value (>= 32 bits)
DOUBLE a floating-point value (IEEE double precision)
STRING an arbitrary string (ISO-8859-1 or UTF-8)

Boolean values are represented by 1 (true) and 0 (false). String values may contain blanks
(but no TAB characters) and are neither quoted nor escaped. Full support for Unicode strings
(UTF-8) is only available within the UCS/Perl subsystem.

The UCS/R subsystem will interpret Boolean values as logical variables, and strings (except
for the component lexemes) as factor variables with a fixed set of levels (which are automatically
determined from the data).

User-defined attributes may assume the special value NA for missing values. (Note that the
string NA will always be interpreted as a missing value rather than a literal character string!)
UCS/R has built-in support for missing values, whereas UCS/Perl represents them by undef
entries. Programs that do not support missing values may replace them by 0 (BOOL and INT),
0.0 (DOUBLE), or the empty string ”” (STRING).

The data type of a variable is uniquely determined by the variable name, as detailed in the
section §1.2 below.

VARIABLES

In order to be compatible with the R language, variable names may only contain alphanumeric
characters (A-Z a-z 0-9) and periods (.), and they must begin with a letter. The main function of
periods is to delimit words in complex variable names, replacing blanks, hyphens, and underscores.
UCS variable names are case-sensitive.

Periods are not allowed in Perl variable names, but UCS expressions provide a special syntax
for direct access to data set variables (see the ucsexp and UCS::Expression manpages). In the rare
case where plain Perl variables are used to store information from a data set, periods should be
replaced by underscores () in the variable names.

There are strict naming conventions for data set variables, which are detailed in the following
subsections. Apart from a fixed list of core variables (whose names do not contain the . character),
all variable names begin with a period-separated prefix that determines the data type of the
variable.

Core Variables Core variables represent the minimal amount of information that must be
present in a data set file (i.e. evidence for cooccurrences extracted from a corpus). All core vari-
ables are mandatory, except in the case of annotation database files (.adb), which omit frequency
signatures (f f1 f2 N). For relational cooccurrences, frequency signatures can be computed with
the ucs-make-tables utility from a stream of pair tokens (cf. the ucs-make-tables manpage).

INT id a numerical ID value (unique within the data set)
STRING l1 first component type of the pair
STRING l2 second component type of the pair

INT f cooccurrence frequency of pair type
INT f1 marginal frequency of first component
INT f2 marginal frequency of second component
INT N sample size (identical for all pair types)

id is a numerical ID value, which must be unique within a data set. Its intended uses are to
identify pair types in subsets selected from a given data set, and to validate line numbers when
attributes or association scores are computed by an external program and re-integrated into the
data set file.

5

The lexemes l1 and l2 are the component (word) types that uniquely identify a pair type.
Consequently, a data set file must not contain multiple rows with identical l1 and l2 values.
UCS/Perl should provide reasonably good support for Unicode strings as lexemes (in UTF-8 en-
coding), at least when running on Perl version 5.8.0 or newer.

The quadruple f f1 f2 N is called the frequency signature of a pair type. It contains all
the frequency information used by association measures and is equivalent to a contingency
table. Note that the sample size N is identical for all pair types in a data set and is included
here mainly for convenience’ sake (so that association scores can be computed from the row data
without reference to a global variable). See (Evert 2004) for more information on lexemes and
frequency signatures.

Derived Variables Derived variables can be computed from the frequency signatures of pair
types, providing different ”views” of the frequency information. Normally, they are not anno-
tated explicitly but are accessible through UCS expressions, which compute the required values
automatically (see the ucsexp and UCS::Expression manpages).

INT O11 contingency table of observed frequencies
INT O12 (computed from frequency signature)
INT O21
INT O22

INT R1 row sums in observed contingency table
INT R2
INT C1 column sums in observed contingency table
INT C2

The variables O11 O12 O21 O22 represent the observed contingency table of a pair type.
Note that their frequency information is equivalent to the frequency signature of the pair type.
In addition, the row sums (R1 R2) and column sums (C1 C2) of the contingency table are also
made available.

DOUBLE E11 contingency table of expected frequencies
DOUBLE E12 under point null hypothesis
DOUBLE E21 (computed from row and column sums)
DOUBLE E22

The variables E11 E12 E21 E22 represent the contingency table of expected frequencies,
i.e. the expectations of the multinomial sampling distribution under the point null hypothesis of
independence. Most association measures compare observed frequencies to expected frequencies in
some way.

In a geometric interpretation of a data set, each pair type can be interpreted as a point x in
a three-dimensional coordinate space P . Since the sample size N is a constant parameter within
the data set, the coordinates of x are given by the joint and marginal frequencies f f1 f2.

DOUBLE lf logarithmic coordinates
DOUBLE lf1 (base 10 logarithm)
DOUBLE lf2

Since the coordinates usually have a skewed distribution across several orders of magnitude, it
is often more convenient to visualise them on a logarithmic scale. The variables lf lf1 lf2 give
the base ten logarithms of the coordinate triple f f1 f2.

DOUBLE e ebo-coordinates
DOUBLE b (expected, balance, observed)
DOUBLE o

DOUBLE le logarithmic ebo-coordinates
DOUBLE lb (base 10 logarithm)
DOUBLE lo

6

Theoretical and empirical studies of the properties of association measures will often be based
on transformed coordinate systems in the coordinate space. The most useful system are the ebo-
coordinates e b o (for expected, balance, observed). All three coordinates range from 0 to infin-
ity (constrained by the sample size parameter N). The base 10 logarithms le lb lo of the ebo-
coordinates are convenient for visualisation purposes. le and lb range from -infinity to +infinity,
while lo ranges from 0 to infinity (all constrained by N).

For backward compatibility, a transformation of the coordinate system to relative frequen-
cies, which were used in earlier versions of this software, is also supported. The relative cooccurence
(p) and marginal (p1 p2) frequencies are computed from the frequency signature according to the
equations p = f/N, p1 = f1/N, and p2 = f2/N. Note that the logarithmic versions lp lp1 lp2
are negative base 10 logarithms, ranging from 0 to infinity.

Association Scores and Rankings These variables store association scores and rankings for
an arbitrary number of association measures. Each association measure is identified by a key,
which is appended to the respective variable name prefix (resulting in the names am.key and
r.key). See the UCS::AM manpage (and the manpages of the add-on packages listed there) for a
wide range of built-in association measures.

DOUBLE am.* association scores from measure identified by *
INT r.* ranking for this measure (ties are allowed)

Rankings are often computed on the fly, but they may also be annotated in data set files. Note
that the r.* variables should not break ties but report identical ranks (and skip an appropriate
number of subsequent ranks). The ucs-sort program (cf. the ucs-sort manpage) can be used to
resolve ties in various ways (using other association scores, lexical sort order, or randomisation).

User-Defined Variables User-defined variables may contain arbitrary information, which is
typically used for filtering data sets and to determine true positives in evaluation tasks. However,
some special-purpose association measures may also base their association scores on their values.
In order to allow a minimal amount of automatic processing (such as sorting by user-defined
attributes), the variable name prefix of a user-defined variable is used to determine its data type,
according to the following list.

BOOL b.* user-defined Boolean variable
INT n.* user-defined integer variable (n=number)
DOUBLE x.* user-defined floating-point variable
STRING f.* user-defined string variable (f=factor)

User-defined variables with the additional prefix ucs (corresponding to variable names b.ucs.*,
n.ucs.*, x.ucs.*, and f.ucs.*) are reserved for internal use by UCS modules and programs.

REFERENCES

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD
Thesis, University of Stuttgart, Germany.

COPYRIGHT

Copyright (C) 2004 by Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

7

1.3 ucsexp

Introduction to UCS expressions and wildcard patterns

INTRODUCTION

UCS expressions and wildcard patterns are two central features of the UCS/Perl system, which
are to a large part responsible for its convenience and flexibility.

UCS wildcard patterns are used by most command-line tools to select data set variables with
the help of shell-like wildcard characters (?, *, and %). A programmer interface is provided by the
UCS::Match function from the UCS module (see the UCS manpage).

UCS expressions give easy access to data set variables from Perl code. With only a ba-
sic knowledge of Perl syntax, users can compute association scores and select rows from a data
set (using the ucs-add and ucs-select utilities). The programmer interface is provided by the
UCS::Expression module (see the UCS::Expression manpage for details). Before reading §1.3, you
should become familiar with the UCS data set format and variable naming conventions as described
in the ucsfile manpage.

When used on the command line, wildcard patterns usually have to be quoted to keep the
shell from expanding wildcards (the GNU Bash shell knows better, though, unless there happen to
be matching files in the current directory). Note that when a list of variable names and patterns
is passed to one of the UCS/Perl utilities, each name or wildcard pattern has to be quoted indi-
vidually. UCS expressions (almost) always have to be quoted on the command-line. Single quotes
(’...’) are highly recommended to avoid interpolation of variables and other meta-characters.
The UCS/Perl utilities expect a UCS expression to be passed as a single argument, so the expres-
sion must be written as one string. In particular, any expression containing whitespace must be
quoted.

UCS WILDCARD PATTERNS

As described in the ucsfile manpage, UCS variable names may only contain the alphanumeric
characters (A-Z a-z 0-9) and the period (.), which serves as a general-purpose word delimiter.
There is a fixed set of core variables, whose names do not contain a period. All other variable
names must begin with a prefix (one of am. r. b. n. x. f.) that determines the data type
of the variable. The three wildcard characters take the special role of the period into account.
Their meanings are

? ... a single character, except "."
* ... a string that does NOT contain a "."
% ... an arbitrary string of characters

The % wildcard is typically used to select variable names with a specific prefix or suffix, while
* matches the individual words (or parts of words) in a complex variable name.

Examples

• a pattern without wildcard characters corresponds to a literal variable name : id, O11,
am.log.likelihood

• the pattern * matches all core variables (and nothing else); % matches all variable names

• O* matches the derived variables O11, O12, O21, and O22 ; *11 matches O11 and E11, but
no complex variable names

• prefix patterns allow us to select variables by their type, e.g. am.% for all association scores,
or f.% for all user-defined string variables (factors); the * wildcard is inappropriate here
because the variable names may contain additional period after the prefix

8

• when variable names are chosen systematically, prefix patterns can also be used to select
meaningful groups of variables: am.chi.squared% matches all association scores that are
derived from a chi-squared test, and am.%.pv matches all association scores that can be
interpreted as probability values (see the UCS::AM and UCS::AM::HTest manpages for more
information)

UCS EXPRESSIONS

An UCS expression consists of ordinary Perl code extended with a special syntax to access data
set variables. This code is compiled on the fly and applied to the rows of a data set one at a time.
The return value of a UCS expression is the value of the last statement executed, unless there is
an explicit return statement. When the expression is used as a condition to select rows from a
data set, it evaluates to true or false according to the usual Perl rules (the empty string ’’ and
the number 0 are false, everything else is true).

Data set variables are accessed by their variable name enclosed in % characters. They evaluate
to the respective value for the current row in the data set and can be used like ordinary scalar
variables in Perl. Thus, %f% corresponds to the cooccurrence frequency f of a pair type, %l1%
and %l2% to its component lexemes, and %am.log.likelihood% to an association score from the
log-likelihood measure. Derived variables (see the ucsfile manpage) do not have to be annotated
explicitly in a data set. When necessary, they are computed on the fly from a pair type’s frequency
signature. Variable references should be treated as read-only (they are automatically localised so
that assigning a new value to a UCS variable reference does not modify the original data set).

Any temporary variables needed by the Perl code should be made lexical by declaring them
with the my keyword. Variable names beginning with an underscore (such as $ f or $ n total)
are reserved for internal use. Please don’t use global variables, which pollute the namespaces and
might interfere with other parts of the program. If you feel that you absolutely need a variable
to carry information from one row to the next, use a fully qualified variable name in your own
namespace.

Since a UCS expression is compiled by the Perl interpreter, it offers the full power and flexibility
of Perl, but it also shares its idiosyncrasies and traps for the unwary. You should have a good work-
ing knowledge of Perl in order to write UCS expressions. If you don’t know the difference between
== and eq, now is the time to type perldoc perl and start reading the Perl documentation.

Just as in Perl, data types are automatically converted as necessary. Missing values (which
appear as NA in data set files) are represented by undef in Perl. When there may be missing
values in a data set, test for definedness (e.g. with defined(%b.colloc%)) to avoid warning
messages. UCS expression can use all standard Perl functions (described on the perlfunc manpage).
In addition, the utility functions from UCS::Expression::Func (see the UCS::Expression::Func
manpage for a detailed description) and a range of special mathematical and statistical functions
defined in the UCS::SFunc module (see the UCS::SFunc manpage for a complete listing and details)
are imported automatically and can be used without qualification.

UCS Expressions for Programmers The programmer interface to UCS expressions is pro-
vided by the UCS::Expression module (see the UCS::Expression manpage), with functions for
compiling and evaluating UCS expressions. The UCS::DS::Memory module includes several
methods that apply a UCS expression to the in-memory representation of a UCS data set. Note that
all built-in association measures are implemented as UCS expressions (see the UCS and UCS::AM
manpages for more information, or have a look at the source files).

When you want to use external functions (either defined by your own module or imported from a
separate module), they must be fully qualified. For instance, you must write Math::Trig::atan(1)
instead of just atan(1). Make sure that the module is loaded (with use Math::Trig;) before the
expression is evaluated for the first time. You can just put the use statement in the Perl script
or module where the UCS expression is defined, and it is probably also safe to include it in the
expression itself (which allows you to use external libraries even in UCS expression typed on the
command line).

An advanced feature of UCS expressions that is only available through the programmer interface
are parameters. Parameters play the role of constants in UCS expressions: they can be accessed

9

like data set variables, but their values are fixed and stored within the UCS::Expression object.
Parameter names must be valid UCS identifiers and should be all uppercase in order to avoid
conflicts with variable names. Parameters must be declared and intialised when the UCS expression
is compiled. Their values can be changed with the set param method. See the UCS::Expression
manpage for more information.

Examples

• The simplest UCS expressions compare the values of a data set variable to a constant. Recall
that == is used for numerical comparison and eq for string comparison in Perl. Both operands
will automatically be converted into an appropriate data type.

%f% == 1 # hapax legomena (single occurrences)

%f% >= 5 # pair types with cooccurrence freq. >= 5

%l1% eq "black" # first component type is "black"

Since UCS expressions are essentially short Perl scripts, the # character can be used to intro-
duce line comments. String variables can also be matched against Perl regular expressions:

%l2% =~ /ness$/ # second component ends in ...ness

• Such simple comparisons can be combined into complex Boolean expressions. Use of the
lexical operators and, or, and not is recommended for readability (and to avoid confusion
with bit operators). Parentheses can also improve readability and help to avoid ambiguities.

%f% >= 5 and %f% < 10 # pair types in frequency range 5 .. 9

pair types that are ranked high by t-score, but not by log-likelihood
(%r.t.score% <= 100) and not (%r.log.likelihood% <= 100)

• Missing values (NA) in a data set can be detected with Perl’s defined operator. It may be
useful to test data set variables before using them in order to avoid warning messages. The
following examples assume a user-defined integer variable n.accept, which lists the number
of annotators who have accepted a particular pair type as a collocation.

not defined(%n.accept%) # selects rows where n.accept has the value NA

%n.accept% >= 1 # will print warnings for all NA values

defined(%n.accept%) and (%n.accept% >= 1) # this is safe

• UCS expressions may contain multiple Perl statements, which must be separated by semicolon
(;) characters. In this way, a complex formula can be broken down into smaller parts.
The value of the expression is determined by the last statement (or by an explicit return
command). Temporary variables that hold intermediate values should always be declared
with lexical scope (using my). The first example computes the minimum of two frequency
ratios, using the pre-declared min() function from UCS::Expression::Func.

UCS expression may also extend over multiple lines
my $ratio1 = %f% / %f1%;
my $ratio2 = %f% / %f2%;
min($ratio1, $ratio2); # min() is pre-declared

10

The second example shows how temporary variables can be used to replace missing values
with defaults. Here the integer variable n.accept (for the number of annotators that accepted
the given pair type as a collocation) defaults to 0.

my $n = (defined %n.accept%) ? %n.accept% : 0;
$n >= 1;

The third example identifies prime numbers used as ID values.

foreach my $x (2 .. int(sqrt(%id%))) {
return 0 if (%id% % $x) == 0;

}
return 1;

Dirty Tricks Things not to do ...

• Global variables can be used to carry information from one row to the next (while lexicals
will be re-instantiated and possibly initialised for each row they are applied to). In order to
avoid namespace pollution, put the global variable in a namespace of your own. The example
below uses a global variable in a made-up namespace (scrap) to compute partial sums for
the numerical variable x.weight.

$scrap::partial_sum += %x.weight%;

Of course, this expression will only work once. After that, the variable $scrap::partial sum
must be reset to zero. As long as the first row in the data set has an id value of 1, we can
use the following trick (be careful when using the UCS::DS::Memory module, where index
activation might change the order of the rows).

$scrap::partial_sum = 0 if %id% == 1;
$scrap::partial_sum += %x.weight%;

COPYRIGHT

Copyright (C) 2004 by Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

11

1.4 ucsam

Association measures in UCS/Perl

INTRODUCTION

The statistical analysis of cooccurrence data is usually based on association measures, mathe-
matical formulae that compute an association score from the joint and marginal frequencies of
a pair type (which are called a frequency signature in UCS. This score is a single floating-point
number indicating the amount of statistical association between the components of the pair type.
Association measures can often be written conveniently in terms of a contingency table of ob-
served frequencies the corresponding expected frequencies under the null hypothesis that there is
no association.

For instance, the word pair black box occurs 123 times in the British National Corpus (BNC),
so its joint frequency is f = 123. The adjective black has a total of 13,168 occurrences, and the noun
box has 1,810 occurrences, giving marginal frequencies of f1 = 13,168 and f2 = 1,810. From these
data, the MI measure computes an association score of 1.4, while the log.likelihood measure
computes a score of 567.72. Both scores indicate a clear positive association, but they cannot be
compared directly: each measure has its own scale.

A more detailed explanation of contingency tables and association scores as well as a compre-
hensive inventory of association measures with equations given in terms of observed and expected
frequencies can be found on-line at http://www.collocations.de/AM/. Also see the ucsfile manpage
to find out how frequency signatures, contingency tables and association scores are represented in
UCS data set files.

UCS/Perl supports more than 40 different association measures and variants. In order to
keep them managable, the measures are organised in several packages: a core set of widely-used
”standard” measures is complemented by add-on packages for advanced users. Each package is
implemented by a separate Perl module. Consult the module’s manpage for a full listing of measures
in the package and detailed descriptions. Listings of add-on packages, association measures, and
some additional information can also be printed with the ucs-list-am program (see the ucs-list-am
manpage).

Currently, there are two add-on packages in addition to the standard measures.

UCS::AM (the ”standard” measures)

This core set contains all well-known association measures such as MI, t-score, and log-
likelihood (see the listing in the Section §1.4 below). These measures are also made available
by various other tools (e.g. the NSP toolkit, see http://www.d.umn.edu/˜tpederse/nsp.html)
and they have often been used in applications as well as for scientific research. The UCS::AM
package also includes several other ”simple” measures that are inexpensive to compute and
numerically unproblematic.

Association measures in the core set can be thought of as the ”built-in” measures of UCS/Perl
(although the add-on packages are also part of the distribution). They are automatically
supported by tools such as ucs-add, while the other packages have to be loaded explicitly
(see below).

See the UCS::AM manpage for details.

UCS::AM::HTest (measures based on hypothesis tests)

Many association measures are based on asymptotic statistical hypothesis tests. The test
statistic is used as an association score and can be interpreted (i.e. translated into a p-value)
with the help of its known limiting distribution. The UCS::AM::HTest package provides
p-values for all such association measures as well as the ”original” two-tailed versions of some
tests (the core set includes only one-tailed versions).

See the UCS::AM::HTest manpage for details.

UCS::AM::Parametric (parametric measures)

12

A new approach where the equation of a parametric association measure is not completely
fixed in advance. One or more parameters can be adjusted to obtain a version of the measure
that is optimised for a particular task or data set. Control over the parameters is only
available through the programming interface. For command-line use, special versions of
these measures are provided with a pre-set parameter value, which is indicated by the name
of the measure.

See the UCS::AM::Parametric manpage for details.

In UCS/Perl scripts both the standard measures and the add-on packages have to be loaded
with use statements (e.g. use UCS::AM; for the core set). Association measures are implemented
as UCS::Expression objects (see the UCS::Expression manpage). The UCS module maintains a
registry of loaded measures with additional information and an evaluation function (see Section
”ASSOCIATION MEASURE REGISTRY” in the UCS manpage). When one of the packages above is
loaded, its measures are automatically added to this registry. Association scores can be computed
more efficiently for in-memory data sets, using the add method in the UCS::DS::Memory module
(see the UCS::DS::Memory manpage).

In the ucs-add program, the standard measures are pre-defined, and extension packages can
be loaded with the -x option. Only the last part of the package name has to be specified here
(e.g. HTest for the UCS::AM::HTest package). It is case-insensitive and may be abbreviated to
a unique prefix (so both -x htest and -x ht work as well). See the ucs-add manpage for more
information on how to compute association scores with the ucs-add program.

SOME ASSOCIATION MEASURES

This section briefly lists the most well-known association measures available in UCS/Perl,
all of which are defined in the ”standard” package UCS::AM. See the on-line resource at
http://www.collocations.de/AM/ for fully equations and the UCS::AM manpage for details.

MI (Mutual Information)

The mutual information (MI) measure is a maximum-likelihood for the (logarithmic) strength
of the statistical association between the components of a pair type. It was introduced into
the field of computational lexicography by Church & Hanks (1990), who derived it from
the information-theoretic notion of point-wise mutual information. Positive values indicate
positive association while negative values indicate dissociation (where the components have
a tendency not to occur together).

Note that unlike the original version of Church & Hanks (1990), the UCS implementation
computes a base 10 logarithm.

t.score (t-score)

The MI measure is prone to overestimate association strength, especially for low-frequency
cooccurrences. Church et al. (1991) use a version of Student’s t test (whose test statistics is
called a t-score) to ensure that the association detected by MI is supported by a significant
amount of evidence. Although their application of Student’s test is highly questionable, the
combination of MI and t.score has become a de facto standard in British computational
lexicography.

chi.squared, chi.squared.corr (chi-squared test)

Pearson’s chi-squared test is the standard test for statistical independence in a 2 x 2 con-
tingency table, and is much more appropriate as a measure of the significance of association
than t.score. Despite its central role in mathematical statistics, it has not been very widely
used on cooccurrence data. In particular, t.score was found to be much more useful for the
extraction of collocations from text corpora (cf. Evert & Krenn, 2001).

The ”textbook” form of Pearson’s chi-squared test is a two-tailed version that does not
distinguish between positive and negative association. The chi.squared measure implemented
in UCS/Perl has been converted to a one-sided test with the help of a heuristic decision rule.
Since contingency tables often contain cells with small values, Yates’ continuity correction
should be applied to the test statistic (chi.squared.corr).

13

log.likelihood (likelihood ratio test)

Dunning (1993) showed that the disappointing performance of chi.squared in collocation
extraction tasks is due to a drastic overestimation of the significance of low-frequency cooc-
currences (because of a approximation to its limiting distribution). He suggested to use a
likelihood ratio test instead, whose natural logarithm has the same limiting distribution as
chi.squared. Under the name log-likelihood, this association measure has become a generally
accepted standard in the field of computational linguistics.

Like the chi-squared test, the likelihood ratio test is two-sided, and the log.likelihood measure
has been converted to a one-sided test with the same heuristic decision rule. Both chi.squared
and log.likelihood return the value of their test statistic, which has to be interpreted in terms
of the known limiting distribution. More meaningful p-values for both measures are available
in the UCS::AM::HTest package.

Fisher.pv (Fisher’s exact test)

Although log.likelihood achieves a much better approximation to its limiting distribution than
chi.squared (or chi.squared.corr), it is still an asymptotic and provides only an approximate
p-value. Pedersen (1996) argued in favour of Fisher’s exact test for the independence of
rows and columns in a contingency table, in order to remove the remaining inaccuracy of the
log-likelihood ratio. A drawback of Fisher’s test is that it is numerically expensive and that
naive implementations can easily become unstable.

The Fisher.pv measure implements a one-sided test. It returns an exact p-value, which can
be compared directly with the p-values of chi.squared and log.likelihood.

Dice (Dice coefficient)

The Dice coefficient is a measure from the field of information retrieval, which has been used
by Smadja (1993) and others for collocation extraction. Like MI, it is a maximum-likelihood
estimate of association strength, but its definition of ”strength” differs greatly from point-
wise mutual information. It suffers from the same overestimation problem as MI, which is
mitigated by its different approach to association strength, though.

References Church, K. W. and Hanks, P. (1990). Word association norms, mutual information,
and lexicography. Computational Linguistics 16(1), 22-29.

Church, K. W.; Gale, W.; Hanks, P.; Hindle, D. (1991). Using statistics in lexical analysis.
In: Lexical Acquisition: Using On-line Resources to Build a Lexicon, Lawrence Erlbaum, pages
115-164.

Dunning, T. (1993). Accurate methods for the statistics of surprise and coincidence. Compu-
tational Linguistics 19(1), 61-74.

Evert, S. and Krenn, B. (2001). Methods for the qualitative evaluation of lexical association
measures. In: Proceedings of the 39th Annual Meeting of the Association for Computational Lin-
guistics, Toulouse, France, pages 188-195.

Pedersen, T. (1996). Fishing for exactness. In: Proceedings of the South-Central SAS Users
Group Conference, Austin, TX.

Smadja, F. (1993). Retrieving collocations from text: Xtract. Computational Linguistics 19(1),
143-177.

UCS CONVENTIONS

UCS/Perl uses some conventions for the names of association measures and the computed associ-
ation scores, which are described in this section. It is important to be aware of such conventions,
especially when they deviate from those used by other software packages.

The names of association measures are taken from the on-line inventory at
http://www.collocations.de/AM/. Hyphen characters (-) are replaced by periods (.) to con-
form with the UCS standards (see the ucsfile manpage). Capitalisation is preserved (MI and
Fisher.pv, but log.likelihood) and subscripts are included in the name, separated by a pe-
riod (chi.squared.corr, where corr is a subscript in the original name).

14

Association scores are always arranged so that higher scores indicate stronger (positive)
association, applying a transformation to the original values if necessary. In the one-sided versions
of two-sided tests (e.g. chi.squared and log.likelihood), negative scores indicate negative
association (while positive scores indicate positive association). Scores close to zero are a sign of
statistical independence. Some other measures such as MI also have this property, but many do
not (e.g. Fisher.pv or Dice).

”Explicit” logarithms in the equation of an association measure are usually taken to the base
10 (e.g. in the MI measure). This is not the case when the association score is not interpreted as
a logarithm (e.g. the log.likelihoood, which is a test statistic approximating a known limiting
distribution) and the natural logarithm is required for correct interpretation. The use of base
10 logarithms is always pointed out in the documentation (see the UCS::AM manpage). The
logarithm of infinity if represented by a large floating-point value returned by the inf function
(from the UCS::Expression::Func module). Comparison with +inf() and -inf() can be used to
detect a positive or negative infinite value.

The scores of association measures with the extension .pv represent a p-value (from an exact
test or the approximate p-value of an asymptotic test). Unlike most other scores, p-values can
be compared directly between different measures. They are represented as negative base 10
logarithms, so the association score 3.0 corresponds to a p-value of 0.001 = 1e-3 (+inf() stands
for zero probability, usually the result of an underflow error).

COPYRIGHT

Copyright (C) 2004 by Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

15

2 UCS/Perl Programs

2.1 ucsdoc

UCS front-end to perldoc

SYNOPSIS

ucsdoc [-tk|-ps|-t] [options] PageName | ModuleName | ProgramName

DESCRIPTION

ucsdoc is a front-end to the perldoc program, which sets the required library paths for the
UCS/Perl manpages. Standard Perl documentation is available through ucsdoc as well.

With the -t option, the manpage is formatted in plain ASCII, without highlighting.
With the -ps option, the manpage is formatted in PostScript for printing. The PostScript code

is displayed on stdout so that it can be re-directed into a file or piped into a print command.
With the -tk option, the manpage is displayed in a Perl/Tk window, provided that the Tk

and Tk::Pod modules are installed.
Only one of the three formatting options may be specified.
All other command-line arguments are passed to the perldoc program. Type perldoc -h and

perldoc perldoc for more information on the available options.

COPYRIGHT

Copyright 2004 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

16

2.2 ucs-config

Automatic configuration of UCS/Perl scripts

SYNOPSIS

ucs-config

ucs-config [--version | --base-dir | --perl-dir | --bin-dir | --lib-dir | --R-bin]

ucs-config [-v | --base | --perl | --bin | --lib | -R]

ucs-config ucs-script.pl ucs-script.R ...

ucs-config --run [options] one-liner.perl

ucs-config --run [options] -e ’...’

ucs-config -e ’...’

DESCRIPTION

The ucs-config program is used to print information about the installed UCS/Perl version and
directories, as well as for the automatic configuration of UCS/Perl scripts. The program can be
run in four different modes.

Invoking ucs-config without any arguments prints the UCS splash screen and a configuration
summary.

In the second mode, the program prints one item of configuration information selected with
one of the following flags. This mode is most suitable for use in shell scripts and makefiles. Note
that you are not allowed to specify more than one flag at a time.

--version UCS version
--base-dir root directory of the UCS system
--perl-dir root directory of the UCS/Perl subsystem
--bin-dir bin/ directory of UCS/Perl (contains UCS programs)
--lib-dir lib/ directory of UCS/Perl (contains UCS modules)
--R-bin fully qualified filename of the R interpreter

The third mode is used to in-place edit Perl and R scripts so that they can load the UCS
modules and libraries. For Perl scripts, ucs-config inserts a suitable shebang (#!) line, invoking
the Perl interpreter for which UCS is configured together with the necessary include paths. For R
scripts (which are recognised by their extension .R or .S), ucs-config looks for a line containing
the command source(".../ucs.R") in the script, and inserts the correct path there. Please make
sure that this line does not contain any other commands.

The final mode, introduced by the command-line switch --run, invokes the Perl interpreter with
the correct UCS library path and (almost) all UCS modules pre-loaded (including the standard
association measures from UCS::AM, but none of the add-on packages). The remaining command-
line arguments are passed through to the Perl interpreter, which is really cool for writing one-liners
in UCS/Perl. The flag -e is an abbreviation of --run -e, but does not allow any options to be
passed to the interpreter.

COPYRIGHT

Copyright 2004 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

17

2.3 ucs-tool

Execute UCS/Perl scripts from contrib/ tree

SYNOPSIS

ucs-tool --list [--category | --category=<cat>]
ucs-tool --doc <tool> [<ucsdoc options>]
ucs-tool [--category=<cat>] <tool> ...

DESCRIPTION

In addition to the UCS/Perl programs, which perform general tasks and will be of interest to most
users, the UCS distribution includes a number of UCS/Perl scripts for more specific applications.
These scripts are not directly accessible as command-line programs. They are organised into a
hierarchical set of categories in the contrib/ directory tree, and can be invoked through the ucs-
tool program. If you want to add your own scripts to this tree, read the section on §2.3 below.

LISTING CONTRIBUTED SCRIPTS When the --list (or -l) option is specified, ucs-
tool lists all available UCS/Perl scripts from the contrib/ tree, grouped by category. Add the
option --category (or --cat or -c) for a listing of category names and descriptions (without the
individual tools). You can also use the special short form ucs-tool -lc for this purpose. When an
argument is given for --category, only scripts from the specified category are listed (the category
name is case-insensitive).

Some scripts may provide manual pages in the form of embedded POD documentation. Such
manual pages can be displayed with the --doc (or -d) flag, followed by the name of the script. See
the section on §2.3 below for details on how script names are matched. ucs-tool uses the ucsdoc
program to format manual pages and accepts ucsdoc options (such as -ps and -tk) after the tool
name.

SCRIPT INVOCATION In order to invoke one of the contributed UCS/Perl scripts, simply
specify its name (as shown by the --list option), followed by command-line arguments for the
selected script, e.g.

ucs-tool dispersion-test -m 3 -N 100000 -k 100 -V 2500

All contributed scripts should include a short help page that can be displayed with the --help
(or -h) option. Note that this is a script option and therefore must be specified after the script
name:

ucs-tool dispersion-test --help

Recall that full manual pages, when available, can be displayed with the --doc option specified
before the script name (as described above).

Script names are case-insensitive, and it is sufficient to specify a unique prefix of the name. For
instance, you can invoke the print-documentation script with the short name ucs-tool print
or ucs-tool print-doc. It may be easier to find a unique prefix when the search space is reduced
to a specific category with the --category (or -c) option.

WRITING CONTRIBUTED SCRIPTS

Contributed UCS/Perl scripts are collected in a directory tree rooted in System/Perl/contrib/.
Each subdirectory corresponds to a script category. These categories are organised hierarchically
according to the directory structure (for instance, --list --category=Import lists all scripts
found in the directory Import/ and its subdirectories, such as Import/NSP/ and Import/CWB/).
The file CATEGORIES contains a listing of all known categories with short descriptions (category
names and descriptions must be separated by a single TAB character).

18

If you want to add your own UCS/Perl scripts to the repository, you should put them in
the Local/ directory (which is reserved for scripts that are not part of the UCS distribution).
This is often the easiest way to make a UCS/Perl script available to all users of a UCS installa-
tion. Note that script files must have the extension .perl or .pl, which is not part of the script
name (e.g., the script nsp2ucs in the category Import/NSP corresponds to the disk file Im-
port/NSP/nsp2ucs.perl in the contrib/ tree). You can also put your script in a different category
or define your own categories (which you must add to the CATEGORIES file), but this will inter-
fere with upgrading to a new UCS release. You are encouraged to share scripts with other users.
To do so, please send them to the author (or maintainer) of the UCS system, indicating which
category they should be included in.

Unlike ordinary UCS/Perl scripts, scripts placed in the contrib/ tree do not have to be con-
figured with ucs-config. They also do not have to be executable and start with a shebang (#!)
line. When invoked with the ucs-tool program, the necessary settings are made automatically.
Contributed scripts that require ”private” modules (which are not installed in a public directory)
can place them in a subdirectory named lib/ (relative to the location of the script file), or in
further subdirectories as required by the module’s name. The lib/ directory tree is automati-
cally added to Perl’s search path. Necessary data files should be wrapped in Perl modules and
stored in the lib/ subtree as well. For instance, assume that a script named my-script in the
Local category (corresponding to the script file Local/my-script.perl) uses the private module
My::Functions. This module can automatically be loaded (with use My::Functions;) from the
file Local/lib/My/Functions.pm in the contrib/ directory tree.

All contributed UCS/Perl scripts should include a short help page describing the script’s func-
tion and command-line arguments, which is displayed when the script is invoked with --help or -h.
Script authors are also encouraged to write full manual pages as embedded POD documentation
(which can then be displayed with ucs-tool --doc), but these are not mandatory.

COPYRIGHT

Copyright 2004-2005 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

19

2.4 ucs-list-am

List built-in association measures and add-on packages

SYNOPSIS

ucs-list-am [-v | -c | -t | -f <f,f1,f2,N>]
[-x <package> | -p <package>] [<am1> <am2> ...]

ucs-list-am --list

DESCRIPTION

This program is a convenient front-end to the registry of association measures maintained by the
UCS module. It can be used to print a list of built-in association measures, add-on packages, and
display additional information about the measures (where available). Detailed information about
the measures can be found in the UCS::AM manpage and the respective manpages of the extension
packages. See the ucsam manpage for an introduction and overview.

ucs-list-am --list

With the --list (or -l) option, ucs-list-am lists all available add-on packages.

ucs-list-am [<options>] [<am1>, <am2>, ...]

When ucs-am-list is called without arguments, it prints the names of all built-in association
measures on stdout, each one followed by a short one-line description of the measure. Specific
association measures can be selected by giving their names as command-line arguments. UCS
wildcard patterns (see the ucsexp manpage) will list all matching measures.

The --extra (or -x) option can be used to load one or more add-on packages so that the
association measures from these packages will be included in the listing (in addition to the built-in
measures). Its argument is a comma-separated list of package names, which are case-insensitive
and may be abbreviated to unique prefixes. For instance, both --extra=HTest,Parameteric an
-x htest,param will load the UCS::AM::HTest and UCS::AM::Parametric packages. The
special keyword ALL loads all available AM packages.

The --package (or -p) option is used to list the association measures from a single package
(without the built-in measures). Again, the package name is case-insensitive and may be abbrevi-
ated to a unique prefix. Note that the --package option cannot be used to load multiple packages.

The amount of information provided can be controlled with the --verbose (or -v), --code
(or -c), and --terse (or -t) options. In --terse mode, only the names of packages are printed,
so that the output can be easily processed by other programs. In --verbose mode, the name
of each association measure is immediately followed by a one-line description (in parentheses).
When available, one or more lines of additional comments will also be shown. In --code mode, the
output consists of the name of each measure, followed by its implementation (as a UCS expression),
followed by a blank line. For parameteric measures, a list of parameters and their default values is
shown on a separate line between the name and the implementation.

Alternatively, a frequency signature can be specified as an argument to the --frequencies
(or -f) option. The expected format is a comma-separated list of four integers, representing the
variables f, f1, f2 and N. In this case, association scores for all selected measures are computed
on the specified frequency signature. Note that it is not possible to compute scores for different
frequency signatures with a single invocation of the ucs-list-am tool.

COPYRIGHT

Copyright 2004 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

20

2.5 ucs-make-tables

Compute contingency tables from a sequence of pair tokens

SYNOPSIS

... | ucs-make-tables [-v] [--sort | -s] [--sample-size=<n> | -N <n>]
[--threshold=<n> | -f <n>] data.ds.gz

... | ucs-make-tables [-v] [-s] [-N <n>] [-f <n>]
[--dispersion [--chunk-size=<n>]] data.ds.gz

... | ucs-make-tables [-v] [-s] [-N <n>] [-f <n>] --segments data.ds.gz

DESCRIPTION

This utility computes frequency signatures and constructs a UCS data set for a stream of pair
tokens (or segment-based cooccurrence data) read from STDIN. It is usually applied to the output
of a cooccurrence extraction tool in a command-line pipe. The input can also be read from a file
(with a < redirection), or decompressed on the fly with (gzip -cd or bzip2 -cd). The resulting
data set is written to the file specified as the single mandatory argument on the command-line.

ucs-make-tables operates in two different modes for relational and positional (segment-
based) cooccurrences. These two modes are described separately in the following subsections.
They take the same command-line options and arguments, as described in the section §2.5 below.
Distance-based positional cooccurrences are not supported, as they usually require direct access to
the source corpus in order to determine the precise window size.

Relational Cooccurrences By default, ucs-make-tables operates in a mode for relational
cooccurrences. In this mode, the input line format is

<l1> TAB <l2>

Each such line represents a pair token with labels <l1> and <l2> (i.e. a pair token that belongs
to the pair type (l1,l2)). For dispersion counts (see below), the input lines should preserve the order
in which the corresponding pair tokens appear in the corpus. When dispersion is measured with
respect to pre-annotated parts (e.g. paragraphs or documents) rather than equally-sized parts, the
input must contain an extra column with unique part identifiers:

<l1> TAB <l2> TAB <part_id>

Note that all pair tokens from a given part must form an uninterrupted sequence in the input,
otherwise the dispersion counts will not be correct.

Segment-based Cooccurrences The mode for segment-based cooccurrences is activated with
the --segments (or -S) option. In this mode, each segment is represented by a sequence of four
lines in the input stream, called a record:

1. <segment id> [TAB <part id>]

2. The labels of all tokens in the segment that can become first components of pairs, separated
by TABs.

3. The labels of all tokens in the segment that can become second components of pairs, separated
by TABs.

4. A blank separator line.

21

Duplicate strings on the second or third line will automatically be ignored. The <segement id>
on the first line is currently ignored. The optional <part id> can be used to compute dispersion
counts for pre-annotated parts. All segments that belong to a given part must appear in consecutive
records, otherwise the dispersion counts will not be correct.

A prototypical example of the segment-based approach are lemmatised noun-verb cooccurrences
within sentences. In this case, each record in the input stream corresponds to a sentence. The first
line contains an unimportant sentence identifier. The second line contains the lemma forms of all
nouns in the sentence (note that duplicates are automatically removed), and the third line contains
the lemma forms of all verbs in the sentence. In order to compute the dispersion of cooccurrences
across documents (i.e. document frequencies in the terminology of information retrieval), unique
document identifiers have to be added to the first line.

COMMAND LINE

The general form of the ucs-make-tables command is

... | ucs-make-tables [--verbose | -v] [--sort | -s]
[--threshold=<t> | -f <t>]
[--sample-size=<n> | -N <n>]
[--dispersion [--chunk-size=<s>]]
[--segments]
data.ds.gz

With the --verbose (or -v) option, some progress information (including the number of pair
tokens or segments, as well as the number of pair types encountered so far) is displayed while the
program is running. When --sort (or -s) is specified, the resulting data set is sorted in ascending
alphabetical order (on l1 first, then l2). Of course, the data set file can always be re-sorted with
the ucs-sort utility. When a frequency threshold <t> is specified with the --threshold (or -f)
option, only pair types with cooccurrence frequency f >= <t> will be saved to the data set file
(but they are still included in the marginal frequency counts of relational cooccurrences, of course).
This option helps keep the size of data sets extracted from large corpora manageable.

When --sample-size (or -N) is specified, only the first <n> pair tokens (or segment records)
read from STDIN will be used, so that the sample size N of the resulting data set is equal to <n>.
This option is mainly useful when computing dispersion counts on equally-sized parts (see below),
but it has some other applications as well.

With the --dispersion (or -d) option, dispersion counts are added to the data set and can
then be used to test the random sample assumption with a dispersion test (see Baayen 2001, Sec.
5.1.1). In order to do so, the token stream is divided into equally-sized parts, each one containing
the number <s> of pair tokens specified with the --chunk-size (or -c) option. For segment-based
cooccurrences, each part will contain cooccurrences from <s> segments. When the total number
of pair tokens (or segments) is not an integer multiple of <s>, a warning message will be issued.
In this case, it is recommended to adjust the number of tokens with the --sample-size option
described above.

The dispersion count for each pair type, i.e. the number of parts in which it occurs, is stored
in a variable named n.disp in the resulting data set file. In addition, the number of parts and the
part size are recorded in the global variables chunks and chunk.size. When the part size is not
specified, dispersion counts can be computed for pre-annotated parts, which must be identified in
the input stream (see above). In this case, chunk.size is not defined as the individual parts may
have different sizes. NB: The use of pre-annotated parts is discouraged, since the mathematics of
the dispersion test assume equally-sized parts.

EXAMPLES

If you have installed the IMS Corpus Workbench (CWB) as well as the CWB/Perl interface,
you can easily extract relational adjective+noun cooccurrences from part-of-speech tagged CWB
corpora. The ucs-adj-n-from-cwb.perl script supplied with the UCS system supports several

22

tagsets for German and English corpora. It can easily be extended to other tagsets, languages, and
types of cooccurrences (as long as they can be identified with the help of part-of-speech patterns).

The following example extracts adjective+noun pairs with cooccurrence frequency f >= 3 from
the CWB demonstration corpus DICKENS (ca. 3.4 million words), and saves them into the data set
file dickens.adj-n.ds.gz. The shell variable $UCS refers to the System/ directory of the UCS
installation (as in the UCS/Perl tutorial).

$UCS/Perl/tools/ucs-adj-n-from-cwb.perl penn DICKENS

| ucs-make-tables --verbose --sort --threshold=3 dickens.adj-n.ds.gz

(Note that the command must be entered as a single line in the shell.)
Extraction from the DICKENS corpus produces approximately 122990 pair tokens. In order to

apply a dispersion test with a chunk size of 1000 tokens each, the sample size has to be limited to
an integer multiple of 1000:

$UCS/Perl/tools/ucs-adj-n-from-cwb.perl penn DICKENS

| ucs-make-tables --verbose --sort --threshold=3 --sample-size=122000

--dispersion --chunk-size=1000 dickens.disp.ds.gz

A dispersion test for pair types with f <= 5 can then be performed with the following com-
mand, showing a significant amount of underdispersion at all levels.

$UCS/Perl/tools/ucs-dispersion-test.perl -v -m 5 dickens.disp.ds.gz

Segment-based data can be obtained from a CWB corpus with the ucs-segment-from-
cwb.perl script. The following example extracts nouns and verbs cooccurring within sentences.
A frequency threshold of 5 is applied in order to keep the amount of data (and hence the memory
consumption of the ucs-make-tables program) manageable.

$UCS/Perl/tools/ucs-segment-from-cwb.perl -f 5 -t1 "VB.*" -t2 "NN.*" DICKENS s

| ucs-make-tables --verbose --segments --threshold=5 dickens.n-v.ds.gz

REFERENCES

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.
IMS Corpus Workbench (CWB): http://www.ims.uni-stuttgart.de/projekte/CorpusWorkbench/

COPYRIGHT

Copyright 2004 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

23

2.6 ucs-summarize

Compute statistical summaries for variables in UCS data set

SYNOPSIS

ucs-summarize [-v] [-m] f f1 f2 FROM data.ds.gz

ucs-summarize [-v] [-m] am.%.pv FROM data.ds.gz

ucs-summarize [-v] [-m] data.ds.gz

DESCRIPTION

This program computes short statistical summaries of numerical variables in a UCS data set. The
general form of the ucs-summarize command is

ucs-summarize [-v] [-m] <variables> FROM <input.ds>

where <variables> is a whitespace-separated list of variable names or wildcard expression,
and the data set is read from the file specified as <input.ds>. Wildcard expressions may need
to be quoted to avoid interpretation by the shell. When the list of variables is omitted (including
the keyword FROM), summaries are generated for all variables in the data set. In verbose mode
(--verbose or -v option), some progress information is shown while computing the summary.

So far, the statistical summary includes the minimum (min.), maximum (max.), mean
(mean), empirical variance (var.), and the empirical standard deviation (s.d.). In addition,
the number of missing values (NA’s) is reported.

When --memory (or -m) is specified, the data set will be read into memory first. In addition
to the ordinary statistical summary, the absolute minimum (abs.min., the smallest non-zero
absolute value), absolute maximum (abs.max.), and granularity (gran., smallest difference
between any two unequal values) are computed in this mode.

COPYRIGHT

Copyright 2004 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

24

2.7 ucs-select

Select rows and/or columns from UCS data set

SYNOPSIS

ucs-select --count FROM data.ds.gz WHERE ’%O11% < %E11%’

ucs-select ’*’ ’am.%.pv’ FROM data.ds.gz INTO new.ds.gz

ucs-select ’%’ FROM data.ds.gz WHERE ’not defined %b.accept%’

DESCRIPTION

This program is used to select rows and/or columns from a UCS data set file, very much like a
SELECT statement in SQL. The general form of the ucs-select command is

ucs-select [--verbose | -v] (<variables> | --count)
[FROM <input.ds>] [WHERE <condition>] [INTO <output.ds>]

<variables> is a whitespace-separated list of variable names or wildcard patterns (see the
ucsexp manpage), which are matched against the columns of the data set file <input.ds>. The
list of variables may not be omitted: use ’%’ to select all columns, and --count to display the
number of matching rows only. Note that wildcard patterns may need to be quoted individually
(because they contain shell metacharacters).

<condition> is a UCS expression (see the ucsexp manpage) used to select rows from the data
set for which it evaluates to a true value. When the WHERE clause is omitted, all rows are selected.
Note that <condition> must be a single argument and will usually have to be quoted (single
quotes are highly recommended).

The input data set file <input.ds> defaults to STDIN (when omitted). The resulting table is
printed on STDOUT in UCS data set file format (see the ucsfile manpage), and can be written to
a data set file <output.ds> with the optional INTO clause.

With the --verbose (or -v) option, some progress information is displayed while the program
is running.

COPYRIGHT

Copyright 2004 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

25

2.8 ucs-add

Add variables (association scores) to UCS data set

SYNOPSIS

ucs-add [-v] [-m] am.t.score am.Fisher.pv TO data.ds.gz INTO new.ds.gz

ucs-add [-v] [-m] -x HTest am.%.pv TO data.ds.gz INTO new.ds.gz

ucs-add [-r] r.% TO data.ds.gz INTO new.ds.gz

DESCRIPTION

This program is used to add variables (association scores, rankings, derived variables, or
arbitrary UCS expressions entered on the command line) to a UCS data set. If a variable is
already defined in the data set, its values will be overwritten.

The general form of the ucs-add command is

ucs-add [--verbose | -v] [--memory | -m] [--extra=<list> | -x <list>]
<variables> [TO <input.ds>] [INTO <output.ds>]

where <variables> is a whitespace-separated list of variable specifications (see the section on
§2.8 below for details). An additional --randomize option is only useful when adding rankings:

ucs-add [--verbose | -v] [--extra=<list> | -x <list>] [--randomize | -r]
<variables> [TO <input.ds>] [INTO <output.ds>]

The data are read from the file <input.ds>, and the resulting data set with the new annota-
tions is written to the file <output.ds>. When they are not specified, the input and output files
default to STDIN and STDOUT, respectively.

Variable specifications and file names may need to be quoted individually (when they contain
shell metacharacters or whitespace).

Normally, the ucs-add program processes the data set one row at a time, so that <input.ds>
and <output.ds> must not refer to the same file. When --memory (or -m) is specified, the entire
data set is read into memory, annotated, and then written back to the output file. In this case,
<input.ds> and <output.ds> may be identical. This mode is automatically activated when any
rankings are added to the data set.

In both modes of operation, variables are added in the order in which they are given on the
command-line, so variable specifications (rankings and user-defined expressions) may refer to any
of the previously introduced variables.

With the --verbose (or -v) option, some debugging and progress information is displayed
while the program is running. The --extra (or -x) option loads additional built-in association
measures (see the section on adding §2.8 below for details).

VARIABLE SPECIFICATIONS

Association Scores Variables representing association scores are selected by specifying their
variable names (which start with the prefix am.). The names may be given as UCS wildcard pat-
terns (see the ucsexp manpage), which will be matched against the list of all supported association
measures. Examples of useful wildcard patterns are am.% (all measures), am.%.pv (all measures
that compute probability values), and am.chi.squared.% (all variants of Pearson’s chi-squared
test).

By default, only the basic association measures defined in UCS::AM are supported. Other
AM packages (see the UCS::AM manpage for a list of add-on packages) can be loaded with
the --extra (or -x) option. The argument is a comma-separated list of package names (e.g.
--extra=HTest,Parametric to load UCS::AM::HTest and UCS::AM::Parametric), which
are case-insensitive and may be abbreviated to unique prefixes (so -x htest,par works just as
well). Use -x ALL to load all available AM packages.

26

Rankings Variables representing association score rankings are selected by specifying their vari-
able names (which start with the prefix r.). In order to compute a ranking, say r.something, the
corresponding association scores (am.something) must be annotated in the data set. UCS wildcard
patterns are matched against all association scores in the data set (but not against other built-in
association measures). Rankings can also be computed for user-defined measures, provided that
their association scores are annotated. In order to compute a ranking for a built-in association
measure that is not available in the data set, both the association score and the ranking variable
must be specified. The example

ucs-add -m am.% r.% TO data.ds.gz INTO data.ds.gz

adds associations scores and rankings for the basic built-in association measures to the data set
data.ds.gz.

Ties are not resolved in the rankings, so pair types with identical association scores share the
same rank. The rank assigned to such a group of pair types is the lowest free rank (as in the
Olympic Games) rather than the average of all ranks in the group (as is often done in statistics).
With the --random (or -r) option, ties are resolved in a random fashion. When association scores
for the random measure are pre-annotated (i.e. the am.random variable is present in the data set),
these are used for the randomization so that the ranking is reproducible.

Derived Variables Any variable names or wildcard patterns that do not match one of the built-
in association measures are matched against the list of derived variables, which can be computed
automatically from the frequency signatures of pair types. See the ucsfile manpage for a complete list
of derived variables. Examples of useful patterns are E* (expected frequencies), lp* (logarithmic
coordinates), and e b m ((e,b,m)-coordinates).

User-Defined Expressions A user-defined variable specification is a UCS expression (see the
ucsexp manpage) of the form

<var> := <expression>

where <var> is the name of a user-defined variable, association score, or ranking (without
surrounding % characters). This variable is added to the input data set if necessary and set to the
values computed by the UCS expression <expression>. The example below computes association
scores for a compound measure mixed from the rankings according to two other measures (which
must both be annotated in the data set).

am.mixed := -max(%r.t.score%, %r.dice%)

Note that it isn’t possible to compute the corresponding ranking r.mixed directly.

COPYRIGHT

Copyright 2004 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

27

2.9 ucs-join

Join rows and variables from two UCS data sets

SYNOPSIS

ucs-join [--match-on var1,var2,...] data1.ds.gz data2.ds.gz

ucs-join [--add] [--update] [--multiple] [-m var1,var2,...]
data1.ds.gz data2.ds.gz INTO new.ds.gz

ucs-join [--add] [--update] [--multiple] [-m var1,var2,...]
data1.ds.gz WITH am.% FROM data2.ds.gz INTO new.ds.gz

DESCRIPTION

This program can be invoked in three different ways. The short form

ucs-join [-v] [-m <var>,...] <ds1> <ds2>

compares two data sets <ds1> and <ds2>. In particular, the number of rows common to
both data sets and the numbers of rows unique to either one of the data sets are reported. Rows
are matched on the pair types they represent, i.e. the variables l1 and l2. Differences in the
id value or any other annotations are ignored. The coverage is the proportion of pair types in
<ds1> that are also contained in <ds2>.

With the --verbose (or -v) switch, some progress information is displayed while the program
is running. The --match-on (or -m) flag specifies a comma-separated list of variables to use for
matching rows (instead of l1 and l2). Note that the combination of their values must be unique
for every row within each data set.

The second form

ucs-join [-v] [--add] [--update] [--multiple] [-m <var>,...]
<ds1> <ds2> INTO <ds3>

adds variables and/or rows from the data set <ds2> to <ds1>. Rows from the two data
sets are matched on the l1 and l2 variables as above, unless this has been changed with the
--match-on (or -m) flag. The combination of their values must uniquely identify rows in <ds2>,
while duplicate rows in <ds1> are allowed in combination with the --multiple (or -M) option.

For matching rows, all variables from <ds2> are added to the annotations in <ds1>. Variables
that are common to both data sets are overwritten with the values from <ds2> only when they
are undefined (NA) in <ds1>, or when the --update (or -u) option has been given. For backward
compatibility, the default setting can be explicitly selected with --no-overwrite (or -n). If --add
or -a is specified, rows that appear only in <ds2> are added to <ds1> (with all variables that
are not defined in <ds2> set to NA). The resulting data set is written to the file <ds3>.

The most general form

ucs-join [-v] [--add] [--update] [--multiple] [-m <var>,...]
<ds1> WITH <variables> FROM <ds2> INTO <ds3>

adds selected variables from <ds2> only. <variables> is a whitespace-separated list of vari-
ables names and wildcard patterns, which are matched against the variables of <ds2>. Variables
can be renamed with specifiers of the form new.name=old.name (of course, wildcard patterns can-
not be used here). The --add switch is rarely useful with this form of the ucs-join command.

28

ANNOTATION DATABASES

The ucs-join program is often used to add (manual) annotations from an annotation database
file (.adb) to a data set, and to update annotation databases. For instance, the UCS distribution
includes German PP+verb pairs extracted from the Frankfurter Rundschau corpus (fr-pnv.ds.gz)
and an annotation database created by Brigitte Krenn (pnv.adb.gz). In order to check the coverage
of the annotation database (i.e., how many of the pair types are already contained in the database),
type

ucs-join -v fr-pnv.ds.gz pnv.adb.gz

This will show a coverage of 100%. Annotations from the database can now be added to the
fr-pnv.ds.gz data set (the --update option is only relevant if fr-pnv.ds.gz is already annotated with
the relevant variables):

ucs-join -v --update fr-pnv.ds.gz
WITH ’b.*’ FROM pnv.adb.gz INTO fr-pnv.annot.ds.gz

When an annotation database contains entries that have not been manually examined so far,
these should be annotated with missing values (NA). The database can then be updated from a
new file (in the same .adb format, say new-pnv.adb) with the following commands

mv pnv.adb.gz pnv.adb.BAK.gz
ucs-join -v pnv.adb.BAK.gz new-pnv.adb INTO pnv.adb.gz

If the file new-pnv.adb contains additional pair types (that haven’t already been entered into
the database), you should also specify the --add flag.

Recall that ucs-join will not overwrite existing annotations by default. If you want to correct
mistakes in the annotation database, you need to specify the --update option in the command
above. Note that missing values (NA) will never overwrite existing annotations in the first data set.

COPYRIGHT

Copyright 2004-2005 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

29

2.10 ucs-sort

Sort UCS data set by one or more variables

SYNOPSIS

ucs-sort [-v] [-r] [data.ds.gz] BY am.t.score [INTO new.ds.gz]

ucs-sort [-v] [-r] [data.ds.gz] BY l2+ l1- ... [INTO new.ds.gz]

DESCRIPTION

This program sorts the rows of UCS data by one or more variables. The general form of the
ucs-sort command is

ucs-sort [--verbose | -v] [--randomize | -r]
[<input.ds>] BY <variables> [INTO <output.ds>]

where <variables> is a whitespace-separated list of variable names. A + or - character
appended to a variable name selects ascending or descending order, respectively. The default order
depends on the variable type (association scores are sorted in descending order).

The data set is read from STDIN by default, or from the file <input.ds> when it is specified.
The sorted data set is printed on STDOUT, and can be saved into the file <output.ds> with the
optional INTO clause.

When --randomize (or -r) is specified, ties are broken randomly, using the am.random measure
if it is annotated in the data set. The --verbose (or -v) option displays some (minial) progress
information.

EXAMPLES

The ucs-sort utility is often used in command-line pipes to sort data sets before viewing. Assuming
that a data set file candidates.ds.gz is annotated with the necessary association scores, ranked
candidate lists for the log-likelihood and t-score measures can be displayed with the following
commands:

ucs-sort -r candidates.ds.gz BY am.log.likelihood | ucs-print -i
ucs-sort -r candidates.ds.gz BY am.t.score | ucs-print -i

ucs-sort can also be applied to the output of another UCS tool, e.g. ucs-select. The following
command selects the 100 highest-ranked pair types from the data set file candidates.ds.gz, according
to the log-likelihood measure, and displays them in alphabetical order, sorted by l2 first. (Note
that the command must be entered as a single line in the shell.)

ucs-add -v r.log.likelihood TO candidates.ds.gz
| ucs-select -v ’%’ WHERE ’%r.log.likelihood% <= 100’
| ucs-sort BY l2 l1 | ucs-print -i

COPYRIGHT

Copyright 2004 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

30

2.11 ucs-info

Display information from header of UCS data set file

SYNOPSIS

ucs-info [-s [-v]] [-l] data.ds.gz

DESCRIPTION

This small utility displays information from the header of a data set file (comment lines and global
variables).

With the --size (or -s) option, the actual size of the data set (i.e. the number of pair types)
is also determined, which may be different from the size reported in the header. Note that this
operation has to read the entire data set file and may take some time for larger data sets (use
--verbose or -v to show progress information).

With the --list (or -l) option, the data set variables are listed together with their data types
and optional comments.

COPYRIGHT

Copyright 2004 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

31

2.12 ucs-print

ASCII-format UCS data set for viewing and printing

SYNOPSIS

ucs-print [-i] [-p <lines>] [-d <digits>] data.ds.gz

ucs-print [-o <file>] [-ps [-2] [-l]] [-p <lines>] [-d <digits>] data.ds.gz

ucs-print [<options>] ’*’ ’am.%.pv’ FROM data.ds.gz

DESCRIPTION

Format data set as ASCII table for inclusion in text files, on-line viewing (in a terminal window,
with --interactive option), and printing (in PostScript format, with --postscript option).
The ucs-print utility automatically adjusts column widths and chooses an appropriate format for
floating-point numbers. Boolean attributes are displayed as yes and no, while missing values are
shown as NA.

In the first forms of the command (used in the first two examples above), all variables are
displayed (which usually results in a very wide table). The name of the data set may be omitted,
in which case data is read from STDIN.

In the second form, variables can be selected with a whitespace-separated list of UCS wildcard
patterns (see the ucsexp manpage) or by explicitly specifying the variable names. This feature can
also be used to re-order the columns or display a variable in multiple columns. The FROM clause is
mandatory in this mode, but data can be read from STDIN by using - as the name of the data set.

Note that there may be some delay while the data set is read into memory and analysed,
especially without the --pagesize option.

OPTIONS

• --help, -h

Prints short usage reminder.

• --verbose, -v

Prints some (minimal) progress information on STDERR.

• --output file, -o file

Write output to file, rather than printing it on STDOUT.

• --postscript, -ps

Uses the a2ps program (see the a2ps(1) manpage) to create a PostScript version of the
formatted table for printing. By default, the PostScript code will be shown on STDOUT (and
not be sent to a printer). It can be saved into a file with the --output option. If the
--pagesize option is used, each page will contain the specified number of rows and the table
will be truncated if it is too wide. If this happens, try increasing the number of rows on the
page or use --landscape. If the table still fails to fit, split the variables into two or more
groups that are printed separately.

• --landscape, -l

[In --postscript mode only.] Print pages in landscape orientation rather than portrait.
Especially useful for wide tables.

• --two-up, -2

[In --postscript mode only.] Print two pages on a single sheet, same as the -2 option in
a2ps. This option may give a more satisfactory result for very narrow tables (e.g. when
showing only the pair types).

32

• --interactive, -i

Send output to terminal pager (less) for interactive viewing. This option may not be used
together with --output. The data will automatically be displayed in paged mode, with
the page size adjusted to the height of the terminal window. If the screen size cannot be
automatically determined, use the --pagesize option to activate paging explicitly. The page
size should be set to the screen height (number of text lines) minus 4 for optimal results. Use
-p 0 to deactivate paging in interactive mode.

• --pagesize n, -p n

Split data set into smaller tables of (up to) n rows each, which are separated by blank
lines. Use of this option may improve the formatting quality, helps to avoid excessive
columns widths, and reduces the delay before (partial) results can be displayed (especially
for large data sets). By default, the entire data set is formatted as a single large table (unless
--interactive was specified).

• --digits n, -d n

Display floating-point numbers with a precision of approximately n significant digits. The
actual number of digits shown may differ slightly when a fixed-point format is chosen by the
formatter. The default is n = 8.

BUGS

The code used to determine the screen height in --interactive mode may not work on some
platforms. It has only been tested under Linux so far. If you are using the bash shell, you might
try export LINES before running the ucs-print tool.

COPYRIGHT

Copyright 2004 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

33

3 UCS/Perl Modules

3.1 UCS

Core library

SYNOPSIS

use UCS;

$UCS::Version; # UCS version

$UCS::Copyright; # UCS copyright string

$UCS::BaseDir; # base directory of UCS system

$UCS::PerlDir; # base directory of UCS/Perl

UCS::Die("Msg line 1", "Msg line 2", ...); # really die (even in Tk loop)

UCS::Warn("Msg line 1", "Msg line 2", ...); # warning message (may be caught by Tk)

UCS::Status("Message"); # display status message in Tk window

UCS::Splash(); # splash screen (may be shown during start-up)

$UCS::Verbose = 0; # suppress warnings

@unique_values = UCS::Unique(@list); # remove duplicates from list

@vars = (@UCS::CoreVars, @UCS::DerivedVars); # standard variable names (core and derived)

@matches = UCS::Match($pattern, @names); # match variable names

$ok = UCS::ValidKey($key); # valid identifier, e.g as AM key

$ok = UCS::ValidName($name); # whether variable name is valid

$type = UCS::VarType($name); # "BOOL", "INT", "DOUBLE", "STRING"

($spec, $key) = UCS::SplitName($name); # split am.*, r.*, or user-defined variable name

@registered_AMs = UCS::AM_Keys(); # keys for built-in AMs (when loaded)

if (UCS::AM($key)) {

$full_name = UCS::AM_Name($key); # long descriptive name

$description = UCS::AM_Description($key); # optional multi-line text

$exp = UCS::AM_Expression($key); # AM equation as compiled UCS expression

$score = $exp->eval({f=>$f, f1=>$f1, ...}); # use UCS::Expression methods to evaluate AM

}

$score = UCS::Eval_AM($key, $arghash); # convenient but slow

UCS::Load_AM_Package("HTest", ...); # load built-in AM packages

$ok = UCS::Register_AM # register new association measure

"tscore", # AM key (-> variables am.tscore and r.tscore)

"t-score measure (Church et. al. 1991)", # long descriptive name

’(%O11% - %E11%) / sqrt(%O11%)’, # UCS expression (will be compiled into UCS::Expression)

$multiline_text; # optional multi-line description of AM

DESCRIPTION

This UCS core library maintains a list of bulit-in AMs and Perl subroutines for computing
their scores from a candidate’s signatures. Utility functions perform syntax checks for field
names, determine field types from the naming conventions, and match patterns containing
UCS wildcards against field names.

CONFIGURATION VARIABLES

$UCS::Version;

The currently installed UCS version.

$UCS::Copyright;

A copyright string for the UCS system. Will be displayed by some UCS/Perl scripts.

$UCS::BaseDir;

The base directory of the UCS System installation. Compiled UCS programs and links to
Perl scripts are installed in $UCS::BaseDir/bin/, while the components of UCS/R can be
found in $UCS::BaseDir/R/.

34

$UCS::PerlDir;

The base directory of the UCS/Perl installation. The UCS Perl modules are installed in
$UCS::PerlDir/lib/ and its subdirectories, Perl scripts in $UCS::PerlDir/bin/.

GENERAL FUNCTIONS

UCS::Die($message, ...);

”Safe” replacement for Perl’s built-in die function, which will even exit properly from a
Perl/Tk loop. One or more lines of error messages are printed on STDERR (or shown in
some other suitable manner).

UCS::Warn($message, ...);

By default, prints one or more lines of warning/error messages on STDERR like UCS::Die,
but does not exit the script. The purpose of this replacement for the built-in warn function
is to allow warnings to be caught and displayed in a Perl/Tk user interface. Warnings might
also be redirected to a log file.

UCS::Status($message);

Displays a status message in a Perl/Tk interface. By default, $message is appended to
any previous messages. When $message ends in a newline character (\n), the next call
to UCS::Status will replace the current message; when it ends in a carriage return (\r),
the next call will overwrite the current message from the start. (This is the usual effect of
printing such control characters, and will be simulated in Perl/Tk interfaces).

UCS::Splash();

Displays a UCS splash screen with UCS version information and copyright, e.g. during the
start-up phase of a larger UCS/Perl script.

$UCS::Verbose = 0;

The variable $UCS::Verbose controls whether status messages and warnings are printed on
STDOUT and STDERR, respectively. Verbose output is enabled by default, and can be
suppressed by setting $UCS::Verbose to 0.

@unique values = UCS::Unique(@list);

Removes duplicate values from @list and returns the remaining elements in the original order.
Useful to avoid repretitions of variable names etc.

MANIPULATING VARIABLE NAMES

$std vars = (@UCS::CoreVars, @UCS::DerivedVars);

Names of core and derived variables.

$ok = UCS::ValidKey($key);

Returns true iff $key is a valid UCS identifier, which may be used as an AM key or in the
name of a user-defined variable.

$ok = UCS::ValidName($name);

Returns true iff $name is a valid UCS variable name, i.e. either a standard variable (core or
derived) , an association score or ranking, or a user-defined variable. See ucsfile for details
on the UCS naming conventions.

$type = UCS::VarType($name);

Determines the data type of a variable from its name $name, according to the UCS naming
conventions. Possible data types are BOOL (Boolean, 0/1), INT (signed integer), DOUBLE
(double-precision floating-point), and STRING (string value).

35

($spec, $key) = UCS::SplitName($name);

Splits the variable name $name of an association score, ranking, or user-defined variable into
the specifier $spec and the key $key. $spec will be one of am, r, b, f, n, or x. If $name is
invalid or the name of a standard variable, (undef, $name) is returned.

@matches = UCS::Match($pattern, @names);

Extract strings from @names that match the UCS wildcard pattern $pattern. The pattern
may contain literal characters A-Z a-z 0-9 . and the wildcards ?, *, and %.

? ... arbitrary character
* ... arbitrary substring without "."
% ... arbitrary string

Thus, the pattern % selects all field names, * selects the names of core and derived fields,
am.% all AM scores, etc. See ucsexp for more examples.

ASSOCIATION MEASURE REGISTRY

This registry maintains a list of association measures, which are automatically available to all
UCS/Perl scripts. Association measures are identified by their key, which must be a valid UCS
identifier. Association scores for a measure with the key fisher, for instance, will be stored in the
variable am.fisher, and the corresponding rankings in the variable r.fisher. A wide range of
predefined association measures can be imported from the UCS::AM module and several add-on
packages (see the UCS::AM manpage).

@registered AMs = UCS::AM Keys();

The UCS::AM Keys function returns the keys of all currently registered association mea-
sures as an unordered list. (Note that no association measures are defined unless UCS::AM
and/or the add-on packages have been imported.)

$ok = UCS::AM($key);

Returns true if an association measure is registered under $key.

$full name = UCS::AM Name($key);

Returns a long and descriptive name for the association measure identified by $key. This
name should be suitable for presentation to the user in a selection dialogue.

$description = UCS::AM Description($key);

An optional lengthy description of the association measure identified by $key. $description
is a single string but will usually contain linebreaks (\n), which may need to be removed for
automatic justification (e.g. in a Perl/Tk interface).

$exp = UCS::AM Expression($key);

Returns the equation of the association measure $key, compiled into a UCS::Expression
object. Call the eval or evalloop method of $exp to compute association scores (see
UCS::Expression). The sourcecode of this expression can be retrieved with the string method
(which is especially useful for built-in association measures).

$score = UCS::Eval AM($key, $arghash);

The UCS::Eval AM function is a convenient and shorter alternative, and is equivalent to:

$exp = UCS::AM_Expression($key);
$score = $exp->eval($arghash);

It incurs considerable overhead when association scores are calculated for multiple pair types
(because of the repeated lookup of $key in the AM registry), and should be avoided in tight
loops. (See UCS::Expression for some comments on efficiency.)

36

@packages = UCS::Load AM Package($name, ...);

Load one or more of the built-in AM packages as specified by the function arguments. $name
must match the last part of the corresponding module name, e.g. ’HTest’ to load the
UCS::AM::HTest package. $name is case-insensitive and may be abbreviated to a unique
prefix. The special name ’ALL’ (or ’all’) loads all available add-on packages, while the
empty string ’’ loads the basic measures from UCS::AM. UCS::Load AM Package re-
turns a list containing the full names of all loaded packages (with duplicates removed). If
there is no match for $name, an empty list is returned.

$ok = UCS::Register AM($key, $name, $equation [, $description]);

The UCS::Register AM function is used to register a new association measure, or overwrite
an existing one with a new definition. $key is the identification key of the new measure, $name
a descriptive name, $equation the measure’s equation in the form of an (uncompiled) UCS
expression, and $description an optional multi-line description. $equation may also be an
object of class UCS::Expression (which is cloned rather than re-compiled), enabling the
use of advanced features such as parametric expressions.

The function call returns true if the new measure has been successfully registered. A false
return value indicates that compilation of $equation into an UCS::Expression object failed.
The UCS::Register AM function will die if $key is not a valid UCS identifier.

The example below shows the code used to register the t-score measure (Church et. al.
1991) which has been widely used in English lexicography.

$ok = UCS::Register_AM "tscore",
"t-score measure (Church et. al. 1991)",
’(%O11% - %E11%) / sqrt(%O11%)’,
"The t-score measure applies Student’s t-test to ...";

die "Syntax error in UCS expression for t-score measure"
unless $ok;

SEE ALSO

Type ucsdoc ucsintro for an introduction to UCS/Perl and an overview of its components (in
the MODULES and PROGRAMS sections).

COPYRIGHT

Copyright 2003 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

37

3.2 UCS::File

File access utilities

SYNOPSIS

use UCS::File;

open filehandle for reading or writing

automagically compresses/decompresses files and dies on error

$fh = UCS::File::Open("> my_file.gz");

the same without error checks (may return undefined value)

$fh = UCS::File::TryOpen("> my_file.bz2");

temporary file objects (disk files are automatically removed)

$t1 = new UCS::File::Temp; # picks a unique filename

$t2 = new UCS::File::Temp "mytemp"; # extends prefix to unique name

$t3 = new UCS::File::Temp "mytemp.gz"; # compressed temporary file

$filename = $t1->name; # full pathname of temporary file

$t1->write(...); # works like $fh->print() ;

$t1->finish; # stop writing file

print $t1->status, "\n"; # WRITING/FINISHED/READING/DELETED

main program can read or overwrite file <$filename> now

$line = $t1->read; # read one line (like $fh->getline())

$t1->rewind; # re-read from beginning of file

$line = $t1->read; # (reads first line again)

$t1->close; # stop reading and remove temporary file

other files will be removed when objects $t2 and $t3 are destroyed

execute shell command with error detection

$cmd = "ls -l";

$errlevel = UCS::File::ShellCmd($cmd); # dies with error message if not ok

$UCS::File::Paranoid = 1; # more paranoid checks (-1 for less paranoid)

$errlevel == 0 (ok), 1 (minor problems), ..., 6 (fatal error)

UCS::File::ShellCmd($cmd, \@lines); # capture standard output in array

UCS::File::ShellCmd($cmd, "file.txt"); # ... or in file (for large amounts of data)

UCS::File::ShellCmd(["ls", "-l", @files], \@lines); # bypass shell expansion

DESCRIPTION

This module provides some useful routines for handling files and external programs. This includes
opening files with error checks and automagical compression/decompression, temporary file
objects that are automatically created and deleted, and the execution of shell commands with
extensive error checks.

OPENING FILES

$fh = UCS::File::Open($name);

Open file $name for reading, writing, or appending. Returns FileHandle object if successful,
otherwise it dies with an error message. It is thus never necessary to check whether $fh is
defined.

If $name starts with >, the file is opened for writing (an existing file will be overwritten). If
$name starts with >>, the file is opened for appending.

Files with the extensions .Z, .gz, and .bz2 are automagically compressed and decompressed,
provided that the necessary tools are installed. It is also possible to append to .gz and .bz2
files.

38

Note that $name may also be a read or write pipe ("... |" or "| ...", respectively), which
is passed directly to the built-in open command. It is thus subject to shell expansion and
does not support automagic compression and decompression.

$fh = UCS::File::TryOpen($name);

Same as UCS::File::Open, but without the error checks. Returns undef if the open() call
fails.

TEMPORARY FILES

Temporary files (implemented by UCS::File::Temp objects) are assigned a unique name and are
automatically deleted when the script exits. The life cycle of a temporary file consists of four
stages: create, write, read (possibly re-read), delete. This cycle corresponds to the following
method calls:

$tf = new UCS::File::Temp; # create new temporary file in /tmp dir
$tf->write(...); # write cycle (buffered output, like print function)
$tf->finish; # complete write cycle (flushes buffer)
$line = $tf->read; # read cycle (like getline method for FileHandle)

[$tf->rewind; # optional: start re-reading temporary file]
[$line = $tf->read;]
$tf->close; # delete temporary file

Once the temporary file has been read from, it cannot be re-written; a new UCS::File::Temp
object has to be created for the next cycle. When the write stage is completed (but before reading
has started, i.e. after calling the finish method), the temporary file can be accessed and/or
overwritten by external programs. Use the name method to obtain its full pathname. If no
direct access to the temporary file is required, the finish method is optional. The write cycle will
automatically be completed before the first read method call.

$tf = new UCS::File::Temp [$prefix ;]

Creates temporary file in /tmp directory. If the optional argument $prefix is specified, the
filename will begin with $prefix and be extended to a unique name. If $prefix contains a /
character, it is interpreted as an absolute or relative path, and the temporary file will not be
created in the /tmp directory. To create a temporary file in the current working directory,
use ./MyPrefix.

You can add the extension .Z, .gz, or .bz2 to $prefix in order to create a compressed
temporary file. The actual filename (as returned by the name method) will have the same
extension in this case.

The temporary file is immediately created and opened for writing.

$filename = $tf->name;

Returns the real filename of the temporary file. NB: direct access to this file (e.g. by external
programs) is only allowed after calling finish, and before the first read.

$tf->write(...);

Write data to the temporary file. All arguments are passed to Perl’s built-in print function.
Like print, this method does not automatically add newlines to its arguments.

$tf->finish;

Stop writing to the temporary file, flush the output buffer, and close the associated file
handle. Afer finish has been called, the temporary file can be accessed directly by the script
or external programs, and may also be overwritten. In order to delete a file created by an
external program automatically, finish the temporary file immediately after its creation and
then allow the external tool to overwrite it:

39

$tf = new UCS::File::Temp;
$tf->finish; # temporary file has size of 0 bytes now
$filename = $tf->name;
system "$my_shell_command > $filename";

$line = $tf->read;

Read one line from temporary file (same as calling getline on a FileHandle object). Auto-
matically invokes finish if called during write cycle.

$tf->rewind;

Allows re-reading of the temporary file. The next read call will return the first line of the
temporary file. Internally this is achieved by closing and re-opening the associated file handle.

$tf->close;

Closes any open file handles and deletes the temporary file. This will be done automatically
when the UCS::File::Temp object is destroyed. Use close to free disk space immediately.

SHELL COMMANDS

The UCS::File::ShellCmd function provides a convenient replacement for the built-in system
command. Standard output and error messages produced by the invoked shell command are
captured to avoid screen clutter. The collected standard ouput of the command can optionally be
returned to the caller (similar to the backtick operator ‘$shell cmd‘). UCS::File::ShellCmd
also checks for a variety of error conditions and returns an error level ranging from 0 (successful)
to 6 (fatal error):

Error Level Description
6 command execution failed (system error)
5 non-zero exit value or error message on STDERR
4 -- reserved for future use --
3 warning message on STDERR
2 any output on STDERR
1 error message on STDOUT

Depending on the value of $UCS::File::Paranoid and the error level, a warning message may
be issued or the function may die with an error message.

$UCS::File::Paranoid = 0;

With the default setting of 0, UCS::File::ShellCmd will die if the error level is 5 or greater.
In the extra paranoid setting (+1), it will almost always die (error level 2 or greater). In
the less paranoid setting (-1) only an error level of 6 (i.e. failure to execute the shell
command) will cause the script to abort.

$errlvl = UCS::File::ShellCmd($cmd);

$errlvl = UCS::File::ShellCmd($cmd, $filename);

$errlvl = UCS::File::ShellCmd($cmd, \@lines);

The first form executes $cmd as a shell command (through the built-in system function)
and returns an error level. With the default setting of $UCS::File::Paranoid, serious errors
are usually detected and cause the script to die, so it is not necessary to check the value of
$errlvl.

The second form stores the standard output of the shell command in a file named $filename,
where it can then be processed with external programs or read in by the Perl script. NB:
Compressed files are not supported! It is recommended to use an uncompressed temporary
file (UCS::File::Temp object).

40

The third form takes an array reference as its second argument, splits the standard output
of $cmd into chomped lines and stores them in the array @lines. If there is a large amount
of standard ouput, it is more efficient to use the second form.

Note that $cmd is passed to the shell for metacharacter expansion. In order to avoid this
(e.g. when filename arguments may contain blanks), specify an array reference of the form
[$program, @args] instead:

$errlvl = UCS::File::ShellCmd(["ls", "-l", @files], \@lines);

COPYRIGHT

Copyright 2003 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

41

3.3 UCS::R

UCS/Perl interface to R

SYNOPSIS

use UCS::R;

UCS::R::Start(); # start R backend explicitly

UCS::R::Stop(); # terminate R backend (if possible)

@x = UCS::R::Exec($cmd); # execute R cmd (must return numeric vector)

UCS::R::LoadVector("my.x", \@data); # load numeric vector efficiently into R

$data = UCS::R::DumpVector("my.x"); # returns arrayref

access to special functions and statistical distributions

through the UCS::SFunc module

DESCRIPTION

The UCS::R module provides an interface to the R statistical environment and the UCS/R
libraries on an R interpreter running in the background. When available (as determined by the
installation script), the RSPerl interface is used for efficient communication with the R interpreter.
Otherwise, the system falls back on a slower but more portable solution that simulates an interactive
R session through use of the Expect module. See the UCS::R::RSPerl and UCS::R::Expect manpages
for some details about the strengths and limitations of the two backends.

The UCS::R interface is mainly used by the UCS::SFunc module to make the R implementa-
tions of special functions (binomial coefficients, Gamma function, Beta function) and statistical
distributions (binomial, Poisson, normal, chi-squared, hypergeometric) available to UCS/Perl,
without relying on an external maths library and/or compiled C code.

FUNCTIONS

UCS::R::Start();

Starts the R interpreter. Normally, this function does not have to be called explicitly, as
the backend is automatically launched when an R command is executed for the first time.
Since this will block program execution for a few seconds, some scripts may prefer to call
UCS::R::Start at start-up time before the R process is actually needed.

UCS::R::Stop();

Terminate the R interpreter. Normally, this function does not have to be called explicitly,
but it may be used to shut down an R process that is no longer needed and free memory
resources. Note that this function is not supported by the UCS::R::RSPerl backend and
will be silently ignored.

@x = UCS::R::Exec($cmd);

Executes the R command $cmd in the server process. The command must return a vector,
which is passed back to the calling script in the form of a list @x. When command execution
fails or its return value cannot be parsed, the UCS::R::Exec function will die with an error
message.

At the moment, only numeric vectors are guaranteed to work (although the UCS::R::RSPerl
backend should support all types of vectors). It is safe to execute any command when
UCS::R::Exec is called in void context. When using the UCS::R::Expect backend, com-
plex return values should be made invisible for reasons of speed and robustness.

NB: This interface is not efficient for exchanging large amounts of data with R and may hang
if the input/output buffers overflow. Use the LoadVector and DumpVector functions
for this purpose (see below). Moreover, $cmd must be a single-line command (separate

42

multiple commands with ;), so that it leaves a single command prompt at the beginning of
a line after execution. Avoid cat() and any functions that prompt for user input, otherwise
UCS::R::Exec will become confused and may hang.

UCS::R::LoadVector($varname, \@data);

Efficiently loads a numeric vector into R (making use of a temporary file and the scan
function in R). The data @data are passed in as an array reference and will be stored in the
R variable $varname.

$data = UCS::R::DumpVector($varname);

Efficiently reads a numeric vector from R (making use of a temporary file and the write()
function). The data stored in the R variable $varname (which must be a numeric vector)
are returned as an anonymous array reference $data.

SPECIAL FUNCTIONS AND STATISTICAL DISTRIBUTIONS

The special functions and statistical distributions provided through the R interface are not ex-
ported by this module. Use UCS::SFunc instead. All available functions are documented
in the UCS::SFunc manpage. They are available under the same names in the UCS::R pack-
age. For instance, the R implementation of the lgamma function can be accessed explicitly as
UCS::R::lgamma.

COPYRIGHT

Copyright 2004-2005 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

43

3.4 UCS::R::Expect

Expect-based implementation of R backend

SYNOPSIS

use UCS::R::Expect;
exports Start(), Stop() and Exec() functions into current namespace
as well as LoadVector() and DumpVector()

DESCRIPTION

This module should only be used implicitly through UCS::R, which loads the more efficient
UCS::R::RSPerl implementation if available, and falls back on UCS::R::Expect otherwise.

LIMITATIONS

This module starts an R process in the background and communicates with it interactively through
the Expect module. This approach has several disadvantages:

• Invoking R commands, waiting for output from the R backend, and parsing that output
causes substantial overhead for R function invocations, allowing less than 1000 invocations
per second even on a fast machine.

• The return value of a function call has to be printed by R, then the resulting output has to be
parsed by Perl. This interfacing method is rather frail and currently supports only numeric
vectors as return values.

• The interface is extremely inefficient for exchanging large amounts of data between Perl and
R. It may hang if the input/output buffers used by Expect overflow. Use the LoadVector
and DumpVector functions to pass large numeric vectors to R and back.

Because of these limitations, it is highly recommended that you install and use the RSPerl
interface (available from http://www.omegahat.org/) on Unix platforms. When RSPerl has been
installed with support for calling R from Perl, it will automatically be detected and configured for
use by the UCS installation script. See doc/install.txt for more information and installation tips.

COPYRIGHT

Copyright (C) 2004-2005 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

44

3.5 UCS::R::RSPerl

RSPerl-based implementation of R backend

SYNOPSIS

use UCS::R::RSPerl;
exports Start(), Stop() and Exec() functions into current namespace
as well as LoadVector() and DumpVector()

DESCRIPTION

This module should only be used implicitly through UCS::R, which loads the UCS::R::RSPerl
implementation if available, and falls back on the inefficient UCS::R::Expect implementation
otherwise.

Note that use UCS::R::RSPerl will fail if RSPerl support is not available, causing the compi-
lation of the Perl script to abort.

COPYRIGHT

Copyright (C) 2004-2005 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

45

3.6 UCS::SFunc

Special functions and statistical distributions

SYNOPSIS

use UCS::SFunc;

special functions (all logarithms are base 10)
$c = choose($n, $k); # binomial coefficient
$log_c = lchoose($n, $k);

$y = gamma($a); # Gamma function
$log_y = lgamma($a);
$y = igamma($a, $x [, $upper]); # incomplete Gamma functions
$log_y = ligamma($a, $x [, $upper]);
$y = rgamma($a, $x [, $upper]); # regularised Gamma functions
$log_y = lrgamma($a, $x [, $upper]);
$x = igamma_inv($a, $y [, $upper]); # inverse Gamma functions
$x = ligamma_inv($a, $log_y [, $upper]);
$x = rgamma_inv($a, $y [, $upper]);
$x = lrgamma_inv($a, $log_y [, $upper]);

$y = beta($a, $b); # Beta function
$log_y = lbeta($a, $b);
$y = ibeta($x, $a, $b); # incomplete Beta function
$log_y = libeta($x, $a, $b);
$y = rbeta($x, $a, $b); # regularised Beta function
$log_y = lrbeta($x, $a, $b);
$x = ibeta_inv($y, $a, $b); # inverse Beta functions
$x = libeta_inv($log_y, $a, $b);
$x = rbeta_inv($y, $a, $b);
$x = lrbeta_inv($log_y, $a, $b);

binomial distribution (density, tail probabilities, quantiles)
$d = dbinom($k, $size, $prob);
$ld = ldbinom($k, $size, $prob);
$p = pbinom($k, $size, $prob [, $upper]);
$lp = lpbinom($k, $size, $prob [, $upper]);
$k = qbinom($p, $size, $prob [, $upper]);
$k = lqbinom($lp, $size, $prob [, $upper]);

Poisson distribution (density, tail probabilities, quantiles)
$d = dpois($k, $lambda);
$ld = ldpois($k, $lambda);
$p = ppois($k, $lambda [, $upper]);
$lp = lppois($k, $lambda [, $upper]);
$k = qpois($p, $lambda [, $upper]);
$k = lqpois($lp, $lambda [, $upper]);

normal distribution (density, tail probabilities, quantiles)
$d = dnorm($x, $mu, $sigma);
$ld = ldnorm($x, $mu, $sigma);
$p = pnorm($x, $mu, $sigma [, $upper]);
$lp = lpnorm($x, $mu, $sigma [, $upper]);
$x = qnorm($p, $mu, $sigma [, $upper]);
$x = lqnorm($lp, $mu, $sigma [, $upper]);

46

chi-squared distribution (density, tail probabilities, quantiles)
$d = dchisq($x, $df);
$ld = ldchisq($x, $df);
$p = pchisq($x, $df [, $upper]);
$lp = lpchisq($x, $df [, $upper]);
$x = qchisq($p, $df [, $upper]);
$x = lqchisq($lp, $df [, $upper]);

hypergeometric distribution (density and tail probabilities)
$d = dhyper($k, $R1, $R2, $C1, $C2);
$ld = ldhyper($k, $R1, $R2, $C1, $C2);
$p = phyper($k, $R1, $R2, $C1, $C2 [, $upper]);
$lp = lphyper($k, $R1, $R2, $C1, $C2 [, $upper]);

DESCRIPTION

This module provides special functions and common statistical distributions. Currently, all
functions are imported from the UCS/R system (using the UCS::R interface).

SPECIAL FUNCTIONS

UCS::SFunc currently provides the following special mathematical functions: binomial coef-
ficients, the Gamma function, the incomplete Gamma functions and their inverses, the
regularised Gamma functions and their inverses, the Beta function, the incomplete Beta
function and its inverse, and the regularised Beta function and its inverse. Note that all
logarithmic versions return base 10 logarithms!

$coef = choose($n, $k);

$log coef = lchoose($n, $k);

The binomial coefficient ”$n over $k”, and its logarithm.

$y = gamma($a);

$log y = lgamma($a);

The (complete) Gamma function with argument $a, and its logarithm. Note that the
factorial n! is equal to gamma(n +1).

$y = igamma($a, $x [, $upper);]

$log y = ligamma($a, $x [, $upper);]

The incomplete Gamma function with arguments $a and $x, and its logarithm. If $upper
is specified and true, the upper incomplete Gamma function is computed, otherwise the lower
incomplete Gamma function. It is recommended to set $upper to the string constant ’upper’
as a reminder of its function.

$x = igamma inv($a, $y [, $upper);]

$x = ligamma inv($a, $log y [, $upper);]

The inverse of the incomplete Gamma function, as well as the inverse of its logarithm.

$y = rgamma($a, $x [, $upper);]

$log y = lrgamma($a, $x [, $upper);]

The regularised Gamma function with arguments $a and $x, and its logarithm. If $upper
is specified and true, the upper regularised Gamma function is computed, otherwise the lower
regularised Gamma function. It is recommended to set $upper to the string constant ’upper’
as a reminder of its function.

47

$x = rgamma inv($a, $y [, $upper);]

$x = lrgamma inv($a, $log y [, $upper);]

The inverse of the regularised Gamma function, as well as the inverse of its logarithm.

$beta = beta($a, $b);

$log beta = lbeta($a, $b);

The (complete) Beta function with arguments $a and $b, and its logarithm.

$y = ibeta($x, $a, $b);

$log y = libeta($x, $a, $b);

The incomplete Beta function with arguments $x, $a, and $b, and its logarithm.

$x = ibeta inv($y, $a, $b);

$x = libeta inv($log y, $a, $b);

The inverse of the incomplete Beta function, as well as the inverse of its logarithm.

$y = rbeta($x, $a, $b);

$log y = lrbeta($x, $a, $b);

The regularised Beta function with arguments $x, $a, and $b, and its logarithm.

$x = rbeta inv($y, $a, $b);

$x = lrbeta inv($log y, $a, $b);

The inverse of the regularised Beta function, as well as the inverse of its logarithm.

STATISTICAL DISTRIBUTIONS

UCS::SFunc computes densities, tail probabilities (= distribution function), and quantiles
for the following statistical distributions: binomial distribution, Poisson distribution, normal
distribution, chi-squared distribution, hypergeometric distribution. The function names are
the common abbreviations as used e.g. in the R language, with additional logarithmic versions
(that start with the letter l) (these correspond to the log=TRUE and log.p=TRUE parameters in
R).

Note that logarithmic probabilities are always given as negative base 10 logarithms. The
logarithmic density and tail probability functions return such logarithmic p-values, and the quantile
functions expect them in their first argument.

The Binomial Distribution Binomial distribution with parameters $size (= number of trials)
and $prob (= success probability in single trial). E[X] = $size * $prob, V[X] = $size * $prob * (1
- $prob).

$d = dbinom($k, $size, $prob);

$ld = ldbinom($k, $size, $prob);

Density P(X = $k) and its negative base 10 logarithm.

$p = pbinom($k, $size, $prob [, $upper);]

$lp = lpbinom($k, $size, $prob [, $upper);]

Tail probabilities P(X <= $k) and P(X > $k) (if $upper is specified and true), and their
negative base 10 logarithms. It is recommended to set $upper to the string ’upper’ as a
reminder of its meaning.

The R implementation of binomial tail probabilities underflows for very small probabilities
(even in the logarithmic version), as of R version 2.1. Therefore, these functions use a mixture
of R and Perl code to compute upper tail probabilities for large samples (which are most likely
to lead to undeflow problems for cooccurrence data).

48

$k = qbinom($p, $size, $prob [, $upper);]

$k = lqbinom($lp, $size, $prob [, $upper);]

Lower and upper quantiles. The lower quantile is the smallest value $k with P(X <= $k) >=
$p. The upper quantile (which is computed when $upper is specified and true) is the largest
value $k with P(X > $k) >= $p. In the logarithmic version, $lp must be the negative base
10 logarithm of the desired p-value.

Note that these functions use the R implementation directly without a workaround for un-
deflow problems. The quantiles returned for very small p-values (especially when using
lqbinom) are therefore unreliable and should be used with caution.

The Poisson Distribution Poisson distribution with parameter $lambda (= expectation); E[X]
= V[X] = $lambda.

$d = dpois($k, $lambda);

$ld = ldpois($k, $lambda);

Density P(X = $k) and its negative base 10 logarithm.

$p = ppois($k, $lambda [, $upper);]

$lp = lppois($k, $lambda [, $upper);]

Tail probabilities P(X <= $k) and P(X > $k) (if $upper is specified and true), and their
negative base 10 logarithms. It is recommended to set $upper to the string ’upper’ as a
reminder of its meaning.

$k = qpois($p, $lambda [, $upper);]

$k = lqpois($lp, $lambda [, $upper);]

Lower and upper quantiles. The lower quantile is the smallest value $k with P(X <= $k) >=
$p. The upper quantile (which is computed when $upper is specified and true) is the largest
value $k with P(X > $k) >= $p. In the logarithmic version, $lp must be the negative base
10 logarithm of the desired p-value.

The Normal Distribution Normal distribution with parameters $mu (= expectation) and
$sigma (= standard deviation). Unspecified parameters default to $mu = 0 and $sigma = 1. E[X]
= $mu, V[X] = $sigma ** 2.

$d = dnorm($x, $mu, $sigma);

$ld = ldnorm($x, $mu, $sigma);

Density P(X = $x) and its negative base 10 logarithm.

$p = pnorm($x, $mu, $sigma [, $upper);]

$lp = lpnorm($x, $mu, $sigma [, $upper);]

Tail probabilities P(X <= $x) and P(X >= $x) (if $upper is specified and true), and their
negative base 10 logarithms. It is recommended to set $upper to the string ’upper’ as a
reminder of its meaning.

$x = qnorm($p, $mu, $sigma [, $upper);]

$x = lqnorm($lp, $mu, $sigma [, $upper);]

Lower and upper quantiles. The lower quantile is the smallest value $x with P(X <= $x) >=
$p. The upper quantile (which is computed when $upper is specified and true) is the largest
value $x with P(X >= $x) >= $p. In the logarithmic version, $lp must be the negative base
10 logarithm of the desired p-value.

49

The Chi-Squared Distribution Chi-squared distribution with parameter $df (= degrees of
freedom); E[X] = $df, V[X] = 2 * $df.

$d = dchisq($x, $df);

$ld = ldchisq($x, $df);

Density function f(x) and its negative base 10 logarithm.

$p = pchisq($x, $df [, $upper);]

$lp = lpchisq($x, $df [, $upper);]

Tail probabilities P(X <= $x) and P(X >= $x) (if $upper is specified and true), and their
negative base 10 logarithms. It is recommended to set $upper to the string ’upper’ as a
reminder of its meaning.

$x = qchisq($p, $df [, $upper);]

$x = lqchisq($lp, $df [, $upper);]

Lower and upper quantiles. The lower quantile is the smallest value $x with P(X <= $x) >=
$p. The upper quantile (which is computed when $upper is specified and true) is the largest
value $x with P(X >= $x) >= $p. In the logarithmic version, $lp must be the negative base
10 logarithm of the desired p-value.

The Hypergeometric Distribution Hypergeometric distribution of the upper left-hand corner
X in a 2x2 contingency table with fixed marginals $R1, $R2, $C1, and $C2, where both $R1 +
$R2 and $C1 + $C2 must sum to the sample size N. $k represents the observed value of X and
must be in the admissible range max(0, $R1 - $C2) <= $k <= min($R1, $C1), otherwise the
density will be given as 0 and tail probabilities as 1 or 0, respectively. E[X] = $R1 * $C1 / $N,
V[X] = $R1 * $R2 * $C1 * $C2 / (Nˆ2 * (N-1)).

For R versions before 2.0, the upper tail probabilities are computed with a mixture of R and Perl
code to circumvent a cancellation problem in the R implementation and achieve better precision.
For this reason, the functions for quantiles are currently not supported (but may be when R version
2.0 is required for the UCS toolkit).

$d = dhyper($k, $R1, $R2, $C1, $C2);

$ld = ldhyper($k, $R1, $R2, $C1, $C2);

Density P(X = $k) and its negative base 10 logarithm.

$p = phyper($k, $R1, $R2, $C1, $C2 [, $upper]);

$lp = lphyper($k, $R1, $R2, $C1, $C2 [, $upper]);

Tail probabilities P(X <= $k) and P(X > $k) (if $upper is specified and true), and their
negative base 10 logarithms. It is recommended to set $upper to the string ’upper’ as a
reminder of its meaning.

COPYRIGHT

Copyright 2004-2005 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

50

3.7 UCS::Expression

Compile and execute UCS expressions

SYNOPSIS

use UCS::Expression;

$exp = new UCS::Expression $code; # compile UCS expression

@vars = $exp->needed; # variables needed to evaluate expression

$code = $exp->string; # retrieve sourcecode of UCS expression

$result = $exp->eval(@args); # evaluate UCS expression (argument list)

$result = $exp->eval($arghash); # named arguments (UCS variable names)

$exp = new UCS::Expression $code, "MU" => 10, ...; # expression with parameters

@params = $exp->params; # sorted list of parameter names

$value = $exp->param("MU"); # current value of parameter

$exp->set_param("MU", 1); # set parameter value

$exp2 = $exp->copy; # clone expression (e.g. when changing parameters)

$sub = $exp->code; # reference to compiled Perl expression

$result = $sub->(@args); # argument list is same as for eval()

$listref = $exp->evalloop($size, $arghash); # evaluate expression on full data set

$exp->evalloop(\@result, $size, $arghash); # directly writes to array @result

DESCRIPTION

UCS expressions provide a convenient way to evaluate functions and conditions on the pair types
in a data set. They consist of arbitrary Perl code with a syntax extension for direct access to data
set variables: the character sequence %varname % (where varname is a legal UCS variable name) is
replaced by the value of this variable (for the current pair type). See ucsexp for a more detailed
description of UCS expressions and some cautionary remarks.

A UCS::Expression object represents a compiled UCS expression. The needed method
returns a list of UCS variables that are required for evaluation of the expression. When derived
variables are used in a UCS expression, they are automatically computed from the frequency
signature.

The eval method is normally invoked with a (reference to a) hash of arguments, using UCS
variable names as keys. It selects the variables needed to evaluate the UCS expression automatically
from the hash, and ensures that all of them are present. Better performance is achieved by passing
the required variables as an argument list in the correct order (as returned by needed).

The evalloop method greatly reduces overhead when a UCS expression is applied to a list of
pair types (i.e. a full data set). It expects array references instead of simple variable values, and
returns a reference to an array of the specified length. Optionally, evalloop can write directly to
an existing array.

METHODS

$exp = new UCS::Expression $code;

Compiles the UCS expression $code into a UCS::Expression object. If compilation fails
for some reason, an undef ined value is returned. Compiling a UCS expression involves the
follwing steps:

• All UCS variable references in $code are identified and validated.
• A list of required variables is constructed. Derived variables are implicitly computed

from the frequency signature, and the necessary core variables are automatically added
to the list of required variables.

• The UCS variable references are substituted with lexical Perl variables, which are ini-
tialised from the parameter list @ .

51

• The resulting Perl code is compiled into an anonymous subroutine, which is stored in
the UCS::Expression object and can be executed through the eval method.

Since UCS::Expressions are comparatively small structures, it is usually not necessary to
destroy them explicitly.

$exp = new UCS::Expression $code, $param => $value, ...;

This form of the constructor defines a UCS expression with parameters, given as pairs of
parameter name $param and default value $value. Parameters can be used like variables in
the UCS expression. Their names are simple UCS identifiers, but must not be valid UCS
variable names. The recommended convention is to write parameter names all in upper case.

@names = $exp->params;

Returns the names of all parameters in alphabetical order.

$value = $exp->param($name);

Returns the current value of parameter $name;

$exp->set param($name, $value);

Set the parameter $name to the value $value. The new value will be used by all subsequent
calls to the eval and evalloop methods.

$new exp = $exp->copy;

Makes a clone of the UCS::Expression object $exp. Cloning is a fast operation and should
always be used when changing the parameters of an expression shared between different
modules (e.g. a registered association measure).

@vars = $exp->needed;

The needed methods returns a list of UCS variable names, corresponding to the data set
variables needed to evaluate $exp.

$code = $exp->string;

Returns the original UCS expression represented by $exp as a string, and can be used to
modify and recompile UCS expressions (especially those of built-in association measures).
Note that $code is chomped, but may contain internal linebreaks (\n).

$result = $exp->eval($arghash);

The eval method evaluates a compiled UCS expression on the data passed in $arghash, which
must be a reference to a hash of variable names and the corresponding variable values. The
necessary variables are extracted from $arghash by name, and the method dies with an error
message unless all required variables are present. Unused variables are silently ignored.

$result = $exp->eval(@args);

The second form of the eval method avoids the overhead of variable name lookup and error
checking. Here, the argument list @arg consists of the values of all required variables in the
order defined by the needed method. The list @args is passed directly to the compiled Perl
code, so that errors will usually go undetected.

$sub = $exp->code;

The code method returns a code reference to the anonymous subroutine that resulted from
compilation of the UCS expression. For an expression without parameters, the subroutine
call

$result = $sub->(@args);

is equivalent to

52

$exp->eval(@args);

and further reduces overhead (by a small amount). It may be useful when the UCS expression
is repeatedly applied, looping over a list of pair types. In most such cases, the evalloop
method provides a better solution, though.

$listref = $exp->evalloop($size, $arghash);

$exp->evalloop(\@result, $size, $arghash);

The evalloop method is used to apply $exp to an entire list of pair types (i.e. a data set)
with a single call. Its invocation is similar to the firs form of the eval method. The additional
parameter $size specifies the number of pair types to be processed. Each value in $arghash
must be a reference to an array of length $size. The return value is a reference to an array
of the same length.

The three-parameter form allows evalloop to write the results directly into an existing array,
which may save a considerable amount of overhead when $size is large.

SEE ALSO

See the ucsexp manpage for an introduction to UCS expressions, as well as the UCS::SFunc and
UCS::Expression::Func manpages for pre-defined functions that may be used in UCS expressions.

COPYRIGHT

Copyright 2004 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

53

3.8 UCS::Expression::Func

Utility functions for UCS expressions

SYNOPSIS

use UCS::Expression::Func;

$min_x = min($x1, $x2, ...); # minimum of two or more values
$max_y = max(@y); # maximum of two or more values

$log_prob = -log10($prob); # base 10 logarithm

$log_prob = inf() # replace log(Infinity) = -log(0)
if $prob == 0; # by a very large value

DESCRIPTION

This module provides a collection of simple but useful functions, which are automatically imported
into the UCS::Expression namespace so that they can be used in UCS expressions without
full qualification.

FUNCTIONS

$min x = min($x1, $x2, ...);

Minimum of two or more numbers. The argument could also be an array @x.

$max x = max($x1, $x2, ...);

Maximum of two or more numbers. The argument could also be an array @x.

$log prob = -log10($prob);

Base 10 logarithm, which is used for all logarithmic scales in UCS (especially logarithmic
p-values). Returns -inf() if $prob is zero or negative.

$log infinity = inf();

The inf function returns a large positive floating-point value that represents the logarithm
of Infinity in UCS/Perl. Note that the logarithm of 0 should consequently be represented by
-inf(), as does the log10 function. In order to find out the exact value on your system, you
can use the command line

ucs-config -e ’print inf(),"\n"’

COPYRIGHT

Copyright 2004 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

54

3.9 UCS::AM

Built-in association measures

SYNOPSIS

use UCS;
use UCS::AM;

@builtin_AMs = UCS::AM_Keys();

random
frequency
z.score
z.score.corr
t.score
chi.squared
chi.squared.corr
log.likelihood
Poisson.Stirling
Poisson.pv
Fisher.pv
MI
MI2
MI3
relative.risk
odds.ratio
odds.ratio.disc
Dice
gmean
MS
Jaccard
average.MI
local.MI

DESCRIPTION

This module contains definitions for a wide range of association measures. When the UCS::AM
module is imported, the built-in measures are registered with the UCS core library (see UCS for
details on how to access registered association measures).

The following section gives a full listing of the built-in association measures from the UCS::AM
module with short explanations. Please refer to http://www.collocations.de/AM/ for the full equa-
tions and references. Further association measures can be imported from add-on packages (see
the section on §3.9 below).

Note that some association measures produce infinite values (+inf or -inf). The logarithm of
infinity is represented by the return value of the built-in inf function (see the UCS::Expression::Func
manpage). The association scores of measures with the suffix .pv can be interpreted as probabilities
(the likelihood of the observed data or the p-value of a statistical hypothesis test). Such probabili-
ties are given as negative base 10 logarithms, ranging from 0 to +inf. Measures with the suffix
.tt (for two-tailed) are derived from two-sided statistical hypothesis tests. One-sided versions of
these tests are provided under the same name, but without the suffix.

BUILT-IN ASSOCIATION MEASURES

random

Random numbers between 0 and 1 as association scores simulate random selection of pair
types and are used to break ties when sorting a data set.

55

frequency

Cooccurrence frequency of the pair type. This association measure is used to sort data sets
by frequency, but requires some systematic method for breaking ties.

z.score

A z-score for the observed cooccurrence frequency O11 compared to the expected frequency
E11. The value represents a standardised normal approximation of the binomial sampling
distribution of O11 under the point null hypothesis of independence.

z.score.corr

A z-score for O11 compared to E11 with Yates’ continuity correction applied.

t.score

Church et al (1991) use Student’s t-test to compare the observed cooccurrence frequency O11
to the null expectation E11 estimated from the sample (which is a random variate as well),
applying several approximations to simplify the t.score equation. The computed value is a
t-score with degrees of freedom roughly equal to the sample size N. This application of the
t-test is highly questionable, though, and produces extremely conservative results.

chi.squared

One-sided version of Pearson’s chi-squared test for the independence of rows and columns
in a 2x2 contingency table. Positive scores indicate positive association (O11 > E11), and
negative scores indicate negative association (O11 < E11). The distinction between positive
and negative association is unreliable for small absolute values of the test statistic. Under
the null hypothesis, the one-sided chi.squared statistic approximates a normal distribution
(as the signed root of a chi-squared distribution with one degree of freedom).

chi.squared.corr

One-sided version of Pearson’s chi-squared test for the independence of rows and columns in
a 2x2 contingency table, with Yates’ continuity correction applied.

log.likelihood

One-sided version of the log-likelihood statistic suggested by Dunning (1993), a likelihood ra-
tio test for independence of rows and columns in a 2x2 contingency table (Dunning introduced
the measure as a test for homogeneity of the table columns, i.e. equal success probabilites of
two independent binomial distributions). Positive scores indicate positive association (O11
> E11), and negative scores indicate negative association (O11 < E11). The distinction
between positive and negative association is unreliable for small absolute values of the test
statistic. Under the null hypothesis, the one-sided log.likelihood statistic approximates
a normal distribution (as the signed root of a chi-squared distribution with one degree of
freedom).

Poisson.Stirling

Approximation of the likelihood of the observed cooccurrence frequency O11 under the point
null hypothesis of independence (so that the expected frequency is E11). The measure is
derived from Poisson.likelihood (in the UCS::AM::HTest module) using Stirling’s formula,
resulting in a simple expression that can easily be evaluated. This measure was proposed by
Quasthoff and Wolff (2002) and has been re-scaled to base 10 logarithms to allow a direct
comparison with Poisson.likelihood.

Poisson.pv

Significance (one-sided p-value) of an exact Poisson test for the observed cooccurrence fre-
quency O11 compared to the expected frequency E11 under the point null hypothesis of
independence. This test is based on a Poisson approximation of the correct binomial sam-
pling distribution of O11. It is numerically and analytically much easier to handle than the
binomial test.

56

Fisher.pv

Significance (one-sided p-value) of Fisher’s exact test for independence of rows and columns
in a 2x2 contingency table with fixed marginals. This test is widely accepted as the most ap-
propriate independence test for contingency tables (cf. Yates 1984). Its use as an association
measure was suggested by Pedersen (1996).

MI

Maximum-likelihood estimate of the base 10 logarithm of the mu-value, which is identical to
pointwise mutual information between the events describing occurrences of a pair’s compo-
nents. Note that mutual information is measured in decimal units rather than the customary
bits. The theoretical range is from -inf to +inf, but the actural range for a given data set is
restricted depending on the sample size N.

MI2

A heuristic variant of MI where the numerator is squared in order to discount low-frequency
pairs. This measure also has some theoretical justification, being the square of the gmean
measure.

MI3

Another heuristic variant of MI where the numerator is cubed, which boosts the discounting
effect considerably.

relative.risk

Maximum-likelihood estimate of the logarithmic relative risk coefficient of association
strength (base 10 logarithm). Ranges from -inf to +inf.

odds.ratio

Maximum-likelihood estimate of the logarithmic odds ratio as a coefficient of association
strength (base 10 logarithm). Ranges from -inf to +inf.

odds.ratio.disc

A ”discounted” version of odds.ratio, adding 0.5 to each factor in the equation. This
modification of the odds ratio is commonly used to avoid infinite values, but does not seem
to have a theoretical foundation.

Dice

Maximum-likelihood estimate of the Dice coefficient of association strength. Ranges from 0
to 1.

Jaccard

Maximum-likelihood estimate of the Jaccard coefficient of association strength, which is
equivalent to Dice (i.e., there is a strictly monotonic mapping between the two association
scores). Ranges from 0 to 1.

MS

Maximum-likelihood estimate of the minimum sensitivity coefficient suggested by Pedersen
and Bruce (1996). Ranges from 0 to 1.

gmean

Maximum-likelihood estimate of the geometric mean coefficient of association strength.
Ranges from 0 to 1.

average.MI

Maximum-likelihood estimate of the average mutual information between the indicator vari-
ables X and Y marking instances of a pair type’s components. This implementation uses base
10 logarithms and multiplies the mutual information value with the sample size N in order
to obtain readable values. Interestingly, average.MI is identical to Dunning’s log-likelihood
measure (log.likelihood and its variants) except for a scaling factor.

57

local.MI

Contribution of a given pair type to the (maximum-likelihood estimate of the) average mutual
information of all cooccurrences. Formally, this is the mutual information between the ran-
dom variables U and V, which represent the component types of a pair token in the random
sample.

ADD-ON PACKAGES

The UCS::AM module provides a basic set of useful and well-known association measures. Except
for the Poisson.pv and Fisher.pv, all measures have simple equations that can be computed effi-
ciently. Further and more specialised association measures can be imported from add-on packages.
Currently, the following packages are available:

UCS::AM::HTest variants of hypothesis tests, likelihood measures
UCS::AM::Parametric parametric association measures

These packages are implemented as Perl modules and can simply be loaded with the use
operator. Alternatively, the UCS::Load AM Package function provides a convenient interface,
where only the last part of the package name has to be specified, is case-insensitive, and may be
abbreviated to a unique prefix. For instance, the UCS::AM::HTest package can be loaded with
the specification ’ht’. The empty string ’’ loads UCS::AM, and ’ALL’ imports all available
AM packages. (See the UCS manpage for details.)

COPYRIGHT

Copyright 2003 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

58

3.10 UCS::AM::HTest

More association measures based on hypothesis tests

SYNOPSIS

use UCS;
use UCS::AM::HTest;

@htest_AMs = UCS::AM_Keys();

z.score.pv
z.score.corr.pv
t.score.pv
chi.squared.tt
chi.squared.tt.pv
chi.squared.corr.tt
chi.squared.corr.tt.pv
chi.squared.pv
chi.squared.corr.pv
log.likelihood.tt
log.likelihood.tt.pv
log.likelihood.pv
binomial.pv
multinomial.likelihood.pv
hypergeometric.likelihood.pv
binomial.likelihood.pv
Poisson.likelihood.pv
Poisson.likelihood.Perl.pv

DESCRIPTION

This module contains some further association measures based on statistical hypothesis tests,
most of which are variants of measures defined in the UCS::AM module. There are also several
likelihood measures, which compute the probability of the observed contingency table rather than
applying a full hypothesis test. The association measures defined in this module are intended
mainly for a detailed comparative study of the properties of the significance-of-association class of
AMs. Casual users should stick with the variants found in the UCS::AM module.

The following section gives a full listing of the association measures de-
fined in the UCS::AM::HTest module with short explanations. Please refer to
http://www.collocations.de/AM/ for the full equations and references. When the module is
imported, the additional measures are registered with the UCS core library (see the UCS manpage
for details on how to access registered association measures).

The association scores of measures with the suffix .pv can be interpreted as probabilities (i.e.
the likelihood of the observed data or the p-value of a statistical hypothesis test). Such probabilities
are given as negative base 10 logarithms, ranging from 0 to +inf (+inf is represented by the
return value of the built-in inf function (see the UCS::Expression::Func manpage). Measures with
the suffix .tt (for two-tailed) are derived from two-sided statistical hypothesis tests. One-sided
versions of these tests are provided under the same name without the suffix.

ASSOCIATION MEASURES

z.score.pv

The significance (one-sided p-value) corresponding to z.score, obtained from the distribution
function of the standard normal distribution. (The z.score measure computes a z-score for
the observed cooccurrence frequency O11 compared to the expected frequency E11; see the
UCS::AM manpage for details.)

59

z.score.corr.pv

The significance (one-sided p-value) corresponding to z.score.corr, a z-score for O11 against
E11 with Yates’ continuity correction applied.

t.score.pv

The significance (one-sided p-value) corresponding to t.score, obtained from the distribution
function of the standard normal distribution. Since the number of degrees of freedom is very
large, the t-distribution of the test statistic is practically identical to the standard normal
distribution (t-distribution with df=inf). (The t.score measure is an application of Student’s
t-test to the comparison of O11 against E11; see the UCS::AM manpage for details.)

chi.squared.tt

Pearson’s chi-squared test for independence of rows and columns in a 2x2 contingency ta-
ble. The equation used in this implementation is derived from the homogeneity version of
the chi-squared test (for equality of the success probabilities of two independent binomial
distributions), and is fully equivalent to that of the independence test. Note that Pearson’s
chi-squared test is two-sided.

chi.squared.tt.pv

The significance (two-sided p-value) corresponding to chi.squared.tt, obtained from the
chi-squared distribution with one degree of freedom.

chi.squared.corr.tt

Pearson’s chi-squared test for independence of rows and columns in a 2x2 contingency table,
with Yates’ continuity correction applied (two-sided test).

chi.squared.corr.tt.pv

The significance (two-sided p-value) corresponding to chi.squared.corr.tt.

chi.squared.pv

The significance (one-sided p-value) corresponding to chi.squared, the one-sided version
of Pearson’s test for the independence of rows and columns (see the UCS::AM manpage for
details). The p-value is obtained from the standard normal distribution (since the signed
square root of the chi-squared test statistic has a standard normal distribution).

chi.squared.corr.pv

The significance (one-sided p-value) corresponding to chi.squared.corr, the one-sided ver-
sion of Pearson’s chi-squared test with Yates’ continuity correction applied. Again, the p-
value is obtained from the standard normal distribution.

log.likelihood.tt

The log-likelihood statistic suggested by Dunning (1993), a likelihood ratio test for indepen-
dence of rows and columns in a 2x2 contingency table. (Dunning introduced the statistic as a
test for homogeneity of the table columns, i.e. equal success probabilites of two independent
binomial distributions). Note that all likelihood ratio tests are two-sided tests.

log.likelihood.tt.pv

The significance (two-sided p-value) corresponding to log.likelihood.tt, obtained from the
chi-squared distribution with one degree of freedom.

log.likelihood.pv

The significance (one-sided p-value) corresponding to log.likelihood, the one-sided version
of Dunning’s likelihood ratio test (see the UCS::AM manpage for details). The p-value is
obtained from the standard normal distribution (since the signed square root of the log-
likelihood statistic has a standard normal distribution.)

60

binomial.pv

Significance (one-sided p-value) of an exact binomial test for the observed cooccurrence fre-
quency O11 compared to the expected frequency E11 under the point null hypothesis of
independence. This test is computationally expensive and may be numerically unstable, so
use with caution. (This is also the reason why it is not included in the UCS::AM module.)

multinomial.likelihood.pv

Likelihood of the observed contingency table under the point null hypothesis of independence
(i.e. with expected frequencies E11, E12, E21, and E22 estimated from the observed table).

hypergeometric.likelihood.pv

Likelihood of the observed contingency table under the null hypothesis of independence of
rows and columns, with all marginal frequencies fixed to the observed values.

binomial.likelihood.pv

Binomial likelihood of the observed cooccurrence frequency O11 under the point null hy-
pothesis (with expected frequency E11 estimated from the observed table). This function is
relatively slow and may be numerically unstable, so use with caution.

Poisson.likelihood.pv

Poisson approximation of the binomial likelihood binomial.likelihood.pv, which is numer-
ically and analytically more manageable.

Poisson.likelihood.Perl.pv

Alternative version of binomial.likelihood.pv, based on a direct Perl implementation of
the naive multiplicative algorithm.

COPYRIGHT

Copyright 2003 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

61

3.11 UCS::AM::Parametric

Parametric association measures

SYNOPSIS

use UCS;
use UCS::AM::Parametric;

@parametric_AMs = UCS::AM_Keys();

MI.conf
MI.conf.<n> [<n> = 2, 3, 5, 10, 50, 100, 1000]
Poisson.mu.pv
Poisson.mu.<n>.pv [<n> = 2, 3, 5, 10, 50, 100, 1000, 10000]

DESCRIPTION

This module contains some parametric association measures, which are parametrised extensions
of measures defined in the basic UCS::AM module. Parametric measures are a recent develop-
ment in cooccurrence statistics, and the choice of appropriate parameter values is still very much
a research question. Parametric measures will often be computationally expensive and may be
numerically unstable, so novice users are advised to use the basic measures from the UCS::AM
module instead.

The following section gives a full listing of the parametric association measures de-
fined in the UCS::AM::Parametric module with short explanations. Please refer to
http://www.collocations.de/AM/ for the full equations and references. When the module is im-
ported, the additional measures are registered with the UCS core library (see the UCS manpage
for details on how to access registered association measures).

The association scores of measures with the suffix .pv can be interpreted as probabilities (i.e.
the likelihood of the observed data or the p-value of a statistical hypothesis test). Such probabilities
are given as negative base 10 logarithms, ranging from 0 to +inf (+inf is represented by the
return value of the built-in inf function (see the UCS::Expression::Func manpage).

ASSOCIATION MEASURES

MI.conf

Conservative estimate for the base 10 logarithm of the mu-value (whose maximum-likelihood
estimate is given by the MI measure). The association score computed by MI.conf is the
lower endpoint of a two-sided confidence interval for mu at significance level alpha, which is
specified by the ALPHA parameter (as a negative base 10 logarithm). The ”usual” significance
levels .01 and .001 correspond to ALPHA=2 and ALPHA=3, respectively.

Please duplicate the UCS::Expression object returned by
UCS::AM Expression("MI.conf") before modifying the ALPHA parameter.

MI.conf.ALPHA

Versions of MI.conf with the ALPHA parameter pre-set to the value specified as part of
the name. Available ALPHA values are 2, 3, 5, 10, 50, 100, and 1000. For instance,
MI.conf.10 computes a two-sided confidence interval at significance level 1E-10.

Do not modify the ALPHA parameter of these association measures (in the UCS::Expression
object returned by the UCS::AM Expression function).

Poisson.mu.pv

Poisson test for O11 under the modified point null hypothesis pi = p1 * p2 * mu (rather
than the independence hypothesis pi = p1 * p2 used by the Poisson.pv measure). The
(non-logarithmic) value of mu is given by the MU parameter. For MU=1, the association scores
computed by Poisson.mu.pv are identical to those of Poisson.pv.

62

Please duplicate the UCS::Expression object returned by
UCS::AM Expression("Poisson.mu.pv") before modifying the MU parameter.

Poisson.mu.MU.pv

Versions of Poisson.mu.pv with the MU parameter pre-set to the value specified as part of
the name. Available MU values are 2, 3, 5, 10, 50, 100, 1000, and 10000.

Do not modify the MU parameter of these association measures (in the UCS::Expression
object returned by the UCS::AM Expression function).

COPYRIGHT

Copyright 2003 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

63

3.12 UCS::DS

Base class for data set implementations

SYNOPSIS

use UCS::DS;

$ds = new UCS::DS; # "virtual" data set

$ds->add_vars($name1, $name2, ...); # append variables (= columns) in this order

$ds->delete_vars($name1, ...); # delete variables (column ’gaps’ are closed)

$type = $ds->var($name); # check whether variable exists, returns data type

$index = $ds->var_index($name); # column index of variable

@names = $ds->vars; # list all variables in column order

$ds->temporary($name, 1); # mark variable as temporary (will not be saved)

@lines = $ds->comments; # ordered list of comment lines

$ds->add_comments($line1, ...); # append comment lines

$ds->delete_comments; # delete all comments

$ds->copy_comments($ds2); # copy all comments from $ds2

@global_vars = $ds->globals; # unordered list of global variable names

$value = $ds->global($var); # return value of global variable $var

$ds->set_global($var, $value); # set value of global variable (may be new variable)

$ds->delete_global($var); # delete global variable

$ds->copy_globals($ds2); # copy global variables from $ds2

DESCRIPTION

UCS::DS acts as a base class for data set managers (either file streams or in-memory representa-
tions). A UCS::DS object manages a list of variables (with names according to the UCS naming
conventions detailed in ucsfile), and maps them to the column indices of a data set file.

It is always ensured that the column indices of a data set span a contiguous range starting at
0. New variables will be appended to the existing columns in the order of declaration. When a
variables is deleted, all columns to its right are shifted to fill the gap.

When it is available, UCS::DS objects also store information from the header of a data set
file. This information includes comment lines and global variables (see ucsfile for details).

METHODS

$ds = new UCS::DS;

Create a new UCS::DS object, with an empty list of variables. Normally, this constructor
is only invoked implicitly by derived classes.

$ds = new UCS::DS $name1, $name2, ...;

Creates a UCS::DS object with the specified variables. Same as

$ds = new UCS::DS;
$ds->add_vars($name1, $name2, ...);

$ds->add vars($name1, $name2, ...);

Add one or more variables $name1, $name2, ... to the data set. Variables that are already
defined will be silently ignored. New variables are appended to the existing columns in the
specfied order. $name1, $name2, ... must be valid UCS variable names.

$ds->delete vars($name1, $name2, ...);

Delete the variables $name1, $name2, ... from the data set. Variables that are not defined
in the data set will be silently ignored. When a variable has been deleted, all columns to its
right are shifted to fill the gap. All arguments must be valid UCS variable names.

64

$type = $ds->var($name);

Check whether the variable $name is defined in the data set $ds. Returns the data type of
the variable (BOOL, INT, DOUBLE, or STRING, see ucsfile), or undef if it does not exist.

$is temp = $ds->temporary($name);

$ds->temporary($name, $val);

Mark variable $name as temporary (if $val is true) or permanent (if $val is false). The single-
argument version returns true if the variable $name is temporary. Temporary variables are
interpreted by in-memory representations of data sets. They may be deleted automatically
and will not be written to data set files.

$index = $ds->var index($name);

Get column index of variable $name. $index ranges from 0 to one less than the number of
variables in the data set. Returns undef if the variable $name does not exist in the data
set. It is recommended to test this condition with the var method first.

@names = $ds->vars;

Returns the names of all variables in this data set, sorted by their column indices. When
saved to a data set file, the columns will appear in this order.

@lines = $ds->comments;

Returns all comment lines as an ordered list (i.e. as they would appear in a data set file).
Comment lines are chomped and the initial # character (followed by an optional blank) is
removed.

$ds->add comments($line1, ...);

Add comment lines (which will be appended to existing comments). Like the data returned
by the comments method, $line1 etc. should not begin with a # character or end in a
newline.

$ds->delete comments;

Deletes all comment lines.

$ds->copy comments($ds2);

Copies all comment lines from $ds2, which must be an object derived from UCS::DS. Ex-
isting comments of $ds are overwritten. This command is equivalent to

$ds->delete_comments;
$ds->add_comments($ds2->comments);

@global vars = $ds->globals;

Returns the names of all global variables in alphabetical order. NB: global variable names
must be valid UCS identifiers.

$value = $ds->global($var);

Returns the value of a global variable $var as a character string. If the global variable $var
does not exist, returns undef.

$ds->set global($var, $value);

Set global variable $var to the string $value. If $var does not exist, it is automatically added
to the data set.

$ds->delete global($var);

Delete a global variable. If $var does not exist, the method call will be silently ignored.

$ds->copy globals($ds2);

Copies all global variables and their values from $ds2, which must be an object derived from
UCS::DS. Any existing global variables off the data set $ds will be erased.

65

COPYRIGHT

Copyright 2003 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

66

3.13 UCS::DS::Stream

I/O streams for data set files

SYNOPSIS

use UCS::DS::Stream;

$ds = new UCS::DS::Stream::Read $filename;

die "format error" unless defined $ds;

access variables, comments, and globals with UCS::DS methods

while ($ds->read) {

die "read/format error"

unless $ds->valid; # valid row data available?

$n = $ds->row; # row number

$idx = $ds->var_index("am.logl"); # see ’ucsdoc UCS::DS’

$logl = $ds->columns->[$idx]; # $ds->columns returns arrayref

$logl = $ds->value("am.logl"); # short and safe, but slower

$rowdata = $ds->data; # returns hashref (varname => value)

$logl = $rowdata->{"am.logl"}; # == $ds->value("am.logl")

}

ds->close;

$ds = new UCS::DS::Stream::Write $filename;

set up variables, comments, and globals with UCS::DS methods

$ds->open; # write data set header

foreach $i (1 .. $N) {

$ds->data("id"=>$i, "l1"=>$l1, ...);# takes hashref or list of pairs

$ds->data("am.logl"=>$logl, ...); # may be called repeatedly to add data

$ds->columns($i, $l1, $l2, ...); # complete list of column data

$ds->write; # write row and clear data cache

}

$ds->close;

DESCRIPTION

UCS data set streams are used to read and write data set files one row at a time. When an
input stream is created, the corresponding data set file is opened immediately and its header is
read in. The header information can then be accessed through UCS::DS methods. Each read
method call loads a single row from the data set file into an internal representation, from which it
is available to the main program.

An output stream creates / overwrites its associated data set file only when the open method
is called. This allows the main program to set up variables and header data with UCS::DS method
calls. After opening the file, the data for each row is first stored in an internal representation, and
then written to disk with the write method.

Note that there are no objects of class UCS::DS::Stream. Both input and output streams
inherit directly from the UCS::DS class.

INPUT STREAMS

Input streams are implemented as UCS::DS::Stream::Read objects. When an input stream
is created, the header of the associated data set file is read in. Header data and information about
the variables in the data set can then be accessed using UCS::DS methods.

The actual data set table is then loaded one row (= pair type) at a time by calling the read
method. The row data are extracted into an internal representation where they can be accessed
with various methods (some of them being safe, others more efficient).

The na method controls whether missing values (represented by the string NA in the data set
file) are recognised and stored internally as undefs, or whether they are silently translated into 0
(BOOL, INT, and DOUBLE variables) and the empty string (STRING variables), respectively.

67

$ds = new UCS::DS::Stream::Read $filename;

Open data set file $filename and read header information. Header variables and comments, as
well as information about the variables in the data set can then be accessed with UCS::DS
methods. If $filename is a plain filename or a partial path (i.e., neither a full relative or
absolute path starting with / or ./ nor a command pipe) and the file is not found in the
current working directory, the standard UCS libary is automatically searched for a data set
with this name.

If there is a syntax error in the data set header, undef is returned. Note that the object
constructor will die if the file $filename does not exist or cannot be opened for reading.

$ds->na(1);

Enables recognition of missing values represented by the string NA (as used by R). When en-
abled, missing values are represented by undefs. Otherwise, they will be silently translated
into 0 (BOOL, INT, and DOUBLE variables) and the empty string (STRING variables), respec-
tively. Use $ds->na(0); to disable missing value support, which is by default activated.

$ok = $ds->read;

Read one line of data from the data set file and extract the field values into an internal
representation. Returns false when the entire data set has already been processed. Typically
used in a while loop similar to the diamond operator: while ($ds->read) {...}.

$at end = $ds->eof;

Returns true when the entire data set has been read, i.e. the logical complement of the value
returned by the last read call.

$ok = $ds->valid;

Returns true if the internal representation contains valid row data. Currently, this only
compares the number of columns in the file against the number of variables in the data set.
Later on, values may also be syntax-checked and coerced into the correct data type.

$n = $ds->row;

Returns the current row number (of the row read in by the last read call, which is now stored
in the internal representation).

$value = $ds->value($name);

Get value by variables name. Returns the value of variable $name currently stored in the
internal representation. This method is convenient and safe (because it checks that the
variable $name exists in the given data set), but incurs considerable overhead.

$cols = $ds->columns;

Return entire row data as an array reference. Individual variables have to be identified by
their index, which can be obtained with the var index method ($cols->[$idx]. Since
index lookup can be moved out of the row processing loop, this access method is much more
efficient than its alternatives. NB: the array @$rowdata is not reused for the next line of
input and can safely be integrated into user-defined data structures.

$rowdata = $ds->data;

Returns hash reference containing entire row data indexed by variable names. Thus, the
values of individual variables can be accessed with the expression $rowdata->{$varname},
similar to using the value method. Access with the data method is convenient for copying
row data to an output stream. It is relatively slow, though, and should not be used in tight
loops.

$ds->close;

Close the data set file. This method is automatically invoked when the object $ds is destroyed.

68

OUTPUT STREAMS

Output streams are implemented as UCS::DS::Stream::Write objects. After creating an
output stream object, variables and header data are set up with the UCS::DS methods. The data
set header is written to disk when the open method is called.

After that, the actual data set table is generated one row at a time. Row data is first stored
in the internal presentation (using the data or the columns method), and then written to disk
when the write method is called.

$ds = new UCS::DS::Stream::Write $filename;

Create output stream for data set file $filename. Note that this file will only be created or
overwritten when the open method is called (in contrast to input streams, which open the
data set file immediately).

$ds->open;

After setting up variables and header data (comment lines and global variables) with the
respective UCS::DS methods, the open method opens the data set file and writes the data
set header. If the file cannot be opened for writing, the open method will die with an error
message.

$ds->data($v1 => $val1, $v2 => $val2, ...);

$ds->data($hashref);

Store data for the next row to be written in an internal representation. When using the data
method, variables are identified by name ($v1, $v2, ...) and can be specified in any order.
The variable-value pairs can also be passed with a single hash reference. Variables that do
not exist in the data set will be silently ignored. The data method can be called repeatedly
for a single row.

$ds->columns($val1, $val2, ...);

The columns method provides a more efficient way to specify row data. Here, all column
values are passed in a single method call, and care has to be taken to list them in the correct
order (namely, the order in which the variables were set up with the add vars method).
NB: the data and columns methods cannot be mixed. It is also not possible to set up the
row data incrementally with repeated columns calls.

$ds->write;

Writes the row data currently stored in the internal buffer to the data set file, and resets the
buffer (to undef values). Any undef values in the buffer (including the case where some
variables were not specified with the data method) are interpreted as missing values and
substituted by the string NA.

$ds->close;

Completes and closes the data set file.

EXAMPLES

The recommended way of copying rows from one data set file to another is to use the data
methods of both streams, so that variables are copied by name rather than column position. It
would be more efficient to pass row data directly (using the columns methods), but this approach
is prone to lead to errors when the order of the columns is different between the input and output
data sets.

The following example makes a copy of a data set file, adding an (enumerative) id variable if
it is not present in the source file.

69

$in = new UCS::DS::Stream::Read $input_file;

die "$input_file: format error"

unless defined $in;

@vars = $in->vars;

$add_id = not $in->var("id");

$out = new UCS::DS::Stream::Write $output_file;

$out->copy_comments($in); # copy comments and

$out->copy_globals($in); # global variables from input file

$out->add_vars("id") # conventionally, the "id" variables

if $add_id; # is in the first column

$out->add_vars(@vars);

$out->open; # writes header to $output_file

while ($in->read) {

die "read/format error"

unless $in->valid;

$out->data($in->data); # copy row data by field name

$out->data("id" => $in->row) # use row number as ID value

if $add_id;

$out->write;

}

$in->close;

$out->close;

COPYRIGHT

Copyright 2004 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

70

3.14 UCS::DS::Memory

In-memory representation of data sets

SYNOPSIS
use UCS::DS::Memory;

$ds = new UCS::DS::Memory; # empty data set
$ds = new UCS::DS::Memory $filename; # read from file (using UCS::DS::Stream)

access & edit variables, comments, and globals with UCS::DS methods

$pairs = $ds->size; # number of pair types
$ds->set_size($pairs); # truncate or extend data set

$value = $ds->cell($var, $n); # read entry from data set table
$ds->set_cell($var, $n, $value); # set entry in data set table

$rowdata = $ds->row($n); # returns hashref (varname => value)
$ds->set_row($n, $rowdata); # set row data (ignores missing vars)
$ds->set_row($n, "f1"=>$f1, "f2"=>$f2, ...);
$ds->append_row($n, $rowdata); # append row to data set
$ds->delete_rows($from, $to); # delete a range of rows from the data set

$vector = $ds->column($var); # reference to data vector of $var
$vector->[$n] = $value; # fast direct access to cells

$ds->eval($var, $exp) # evaluate expression on data set & store in $var
unless $ds->missing($exp); # check first whether all reqd. variables are available

$ds->add($var); # auto-compute variable (derived variable or registered AM)

$stats = $ds->summary($var); # statistical summary of numerical variable

$ds->where($idx, $exp); # define index: rows matching UCS expression
$n = $ds->count($exp); # number of rows matching expression
$vector = $ds->index($idx); # returns reference to array of row numbers
$ds->make_index($idx, $row1, $row2, ...); # define index: explicit list of row numbers
$ds->make_index($idx, $vector); # or array reference (will be duplicated)
$ds->activate_index($idx); # activate index (will be used by most access methods)
$ds->activate_index(); # de-activate index
$ds->delete_index($idx); # delete index

$ds2 = $ds->copy; # make physical copy of data set (using index if activated)
$ds2 = $ds->copy("*", "am.%"); # copy selected variables only (in specified order)

$ds->renumber; # renumber/add ID values as increasing sequence 1 .. size

$ds->sort($idx, $var1, $var2, ...); # sort data set on $var1, breaking ties by $var2 etc.
$ds->sort($idx, "-$var1", "+$var2"); # - = descending, + = ascending (default depends on variable type)
$ds->rank($ranking, $key1, ...); # compute ranking (with ties) and store in data set variable $ranking

$ds->save($filename); # save data set to file (using index if activated)

$dict = $ds->dict($var1, $var2, ...); # lookup hash for variable(s) (UCS::DS::Memory::Dict object)
($max, $average) = $dict->multiplicity; # maximum / average number of rows for each key
if ($dict->unique) { ... } # whether every key identifies a unique row
@rows = $dict->lookup($x1, $x2, ...); # look up key in dictionary, returns all matching rows
$row = $dict->lookup($x1, $x2, ...); # in scalar context, returns first matching row
@rows = $dict->lookup($other_ds, $n); # look up row $n from other data set
$n_rows = $dict->multiplicity($x1, $x2, ...); # takes same arguments as lookup()
@keys = $dict->keys; # return unsorted list of keys entered in dictionary

DESCRIPTION

This module implements an in-memory representation of UCS data sets. When a data set file
has been loaded into a UCS::DS::Memory object (or a new empty data set has been created),
then variable names, comments, and globals can be accessed and modified with the respective
UCS::DS methods (see the UCS::DS manpage).

Additional methods in the UCS::DS::Memory class allow the user to:

• read and write individual cells as well as entire rows or columns

• change the size of a data set

• annotate derived variables, association scores, or arbitrary UCS expressions in the
data set

71

• compute statistical summaries of numerical variables

• select rows matching given UCS expression from a data set

• sort data sets by one or more variables and compute rankings

• save the data set into a data set file

The individual methods are detailed in the following sections. In all methods, columns are
identified by the respective variable names, whereas rows (corresponding to pair types) are identified
by row numbers. NB: Row numbers start with 1 (like R vectors, but unlike Perl arrays)!

GENERAL METHODS

$ds = new UCS::DS::Memory;

Create empty data set. The new data set has zero rows and no variables. Returns object of
class UCS::DS::Memory;

$ds = new UCS::DS::Memory $file [, ’-na’ ;]

Reads data set file into memory and returns UCS::DS::Memory object. The argument
$file is either a string giving the name of the data set file or a UCS::DS::Stream::Read
object (see the UCS::DS::Stream manpage), which has been opened but not read from. When
the specified file does not exist and in the case of a read error, the constructor dies with an
appropriate error message.

The option ’-na’ disables missing value support (which is enabled by default), so that NA
values in the data set file will be replaced by 0 or the empty string, depending on the data
type. Use ’+na’ to enable missing value support explicitly.

$V = $ds->size;

Returns the size of the data set, i.e. the number of rows (or pair types).

$ds->set size($V);

Change the size of the data set to $V rows. This method can both truncate and extend a
data set. NB: Unlike the size method, set size always applies to the real size of the data
set and ignores the active row index. However, all row indices are preserved and adjusted in
case of a truncation. If there is an active row index, it remains active. (See the section §3.14
below for more information on row indices.)

$value = $ds->cell($var, $n);

Retrieve the value of variable $var for row $n (i.e. the $n-th pair type). This method
is convenient and performs various error checks, but it involves a considerable amount of
overhead. Consider the column method when performance is an issue.

$ds->set cell($var, $n, $value);

Set the value of variable $var for row $n to $value. Like cell, this method is convenient, but
comparatively slow. Consider the column method when is an issue.

$rowdata = $ds->row($n);

Returns hash reference containing the entire data from row $n indexed by variable names.
This method is inefficient and mainly for convenience, e.g. when applying a UCS expression
to individual rows (cf. the description of the eval method in the UCS::Expression manpage).

$ds->set row($n, $rowdata);

$ds->set row($n, $var1 => $val1, $var2 => $val2, ...);

Set the values of some or all variables for row $n. The values can either be passed in a single
hash reference indexed by variable names, or as $var => $value pairs. Any variables that do
not exist in the data set $ds are silently ignored. This method is faster than calling set cell
repeatedly, especially when a new row is added to the data set.

72

$ds->append row($rowdata);

$ds->append row($var1 => $val1, $var2 => $val2, ...);

Append new row to the data set and fill it with the specified values. This method is a
combination of set size and set row. Variable values that are not specified in the argument
list are set to undef. When there is an active row index, the new row is appended to
this index, while all other indices remain unchanged (see the section §3.14 below for more
information on row indices).

$ds->delete rows($from, $to);

Delete rows $from through $to from the data set. NB: This method always applies to the
real row numbers and ignores the active row index. All existing indices are adjusted (which
is an expensive operation) and an active row index remains activated. (See the section §3.14
below for more information on row indices.)

$vector = $ds->column($var);

Returns an array reference to the data vector of variable $var. $vector can be used both for
read and write access, so care has to be taken that the data set isn’t accidentally modified
(e.g. through side effects of a map or grep operation on @$vector). Of course, activating
a row index has no effect, since the column method gives direct access to the internal data
structures. (See the section §3.14 below for more information on row indices.)

@missing vars = $ds->missing($exp);

Determines whether all variables required to evaluate the UCS expression $exp (an object of
class UCS::Expression) are defined in the data set $ds. Returns an empty list if $exp can
be evaluated, and the names of missing variables otherwise.

$ds->eval($var, $exp);

Evaluate the UCS expression $exp (an object of class UCS::Expression) on the data set $ds,
and store its values in the variable $var. When $var is a new variable, it is automatically
added to the data set; Otherwise, the previous values are overwritten. This operation is
much faster than repeatedly evaluating $exp for each row. For convenience, $exp can also be
specified as a source string, which will be compiled on the fly. NB: The eval method always
operates on the entire data set, even when a row index is activated. (See the section §3.14
below for more information on row indices.)

$ds->add($var);

Add a new variable to the data set and auto-compute its values, or overwrite an existing
variable. $var must be the name of a derived variable such as E11 or an association
score such as am.t.score (see the ucsfile manpage for details).

$stats = $ds->summary($var);

Computes a statistical summary of the numerical variable $var (a numerical variable is a
variable of data type INT or DOUBLE). $stats is a hash reference representing a data structure
with the following fields:

MIN ... minimum value
MAX ... maximum value
ABSMIN ... smallest non-zero absolute value
ABSMAX ... largest absolute value
SUM ... sum of all value
MEAN ... mean (= average)
MEDIAN ... median (= 50% quantile)
VAR ... empirical variance
SD ... empirical standard deviation (sq. root of variance)
STEP ... smallest non-zero difference between any two values
NA ... number of missing values (undef’s)

73

Note that some of these fields may be undef if they have no meaningful value for the given
data set.

$ds2 = $ds->copy;

$ds2 = $ds->copy(@variables);

Duplicates a data set, so that $ds2 is completely independent from $ds (whereas $ds2 =
$ds; would just give another handle on the same data set). Comments and globals are
copied to $ds2 as well. Optionally, a list of variable names and/or wildcard patterns (see
the ucsexp manpage) can be specified. In this case, only the selected columns will be copied.
NB: If there is an active row index, the copy will only include the rows selected by the index,
and they will be arranged in the corresponding order. However, no row indices are copied to
$ds2. (See the section §3.14 below for more information on row indices.)

$ds->renumber;

When rows have been deleted from a data set, or a copy has been made with an active
row index, the values of the id variable are preserved (and can be used to match rows
against the correspond entries in the original data set). When an independent numbering is
desired, the renumber method can be used to re-compute the id values so that they form
an uninterrupted sequence starting from 1. NB: The renumbering ignores an activated row
index.

$ds->save($filename);

$ds->save($filename, @variables);

This method saves the contents of $ds to a UCS data set file $filename. When an optional
list of variable names and/or wildcard patterns (see the ucsexp manpage) is specified, only the
selected columns will be saved. NB: If there is an active row index, only the rows selected
by the index will be written to $filename, and they will be arranged in the corresponding
order. The row indices themselves cannot be stored in a data set file. (See the section §3.14
below for more information on row indices.) Also note that temporary variables will not
be saved (see the UCS::DS manpage).

ROW INDEX METHODS

A row index is an array reference containing a list of row numbers (starting from 1, unlike Perl
arrays). Row indices are used to select rows from an in-memory data set, or to represent a re-
ordering of the rows (or both). They are usually created by the where and sort methods, but
can also be constructed explicitly. An arbitrary number of named row indices can be stored in a
UCS::DS::Memory object.

A row index can be activated, creating a ”virtual” data set containing only the rows selected
by the index, arranged in the corresponding order. Most UCS::DS::Memory methods will then
operate on this virtual data set. All exceptions are marked clearly in this manpage. In particular,
the where method selects a subset of the activated index, and sort can be used to reorder it.
There can only be one active row index at a time. There is no way of localising the activation (so
that a previously active index is restored at the end of a block), so it is highly recommended to
use active indices only locally and de-activate them afterwards.

Index names must be valid UCS identifiers, i.e. they may only contain alphanumeric characters
(A-Z a-z 0-9) and periods (.) (cf. VARIABLES in ucsfile). Note that index names beginning with
a period are reserved for internal use.

$ds->make index($idx, $row1, $row2, ...);

$ds->make index($idx, $vector);

Construct row index from a list of row numbers or an array reference $vector, and store
it under the name $idx in the data set $ds. In the second form, the anonymous array is
duplicated, so the contents of $vector can be modified or destroyed without affecting the
stored row index.

74

$vector = $ds->index($idx);

Retrieve row index by name. Returns an array reference to the internal data, so be careful
not to modify the contents of $vector accidentally. In most cases, it is easier to activate $idx
and use the normal access methods.

$ds->delete index($idx);

Delete the row index named $idx. If it happens to be activated, it will automatically de-
activated.

$ds->activate index($idx);

Activate row index $idx. This will clear any previous activations. Note that this operation
may change the effective size of the data set as returned by the size method (unless $idx is
just a sort index).

$ds->activate index();

Deactivate the currently active index, re-enabling direct access to the full data set in its
original order.

$ds->where($idx, $exp);

Construct $idx selecting all rows for which the UCS expression $exp (given as a
UCS::Expression object) evaluates to true (see the ucsexp manpage for an introduction
to UCS expression, and the UCS::Expression manpage for compilation instructions). It is
often convenient to compile $exp on the fly, especially when it is a simple condition, e.g.

$ds->where("high.freq", new UCS::Expression ’%f% >= 10’);

which can be shortened to

$ds->where("high.freq", ’%f% >= 10’);

The where method will automatically compile the source string passed as $exp into a
UCS::Expression object. On-the-fly compilation involves only moderate overhead. When
there is an active row index, where will select a subset of this index, preserving its ordering.

$n = $ds->count($exp);

Similar to where, this method only counts the number of rows matching the UCS expres-
sion $exp, without creating a named index. The condition $exp may be given either as a
UCS::Expression object or as a source string, which is compiled on the fly. (Internally, the
rows are collected in a temporary index, which is automatically deleted when the method
call returns.)

$ds->sort($idx, $key1, $key2, ...);

Sort data set $ds by the specified sort keys. The data set is first sorted, by $key1. Ties are
then broken by $key2, any remaining ties by $key3, etc. If there are any ties left when all
sort keys have been used, their ordering is undefined (and depends on the implementation
of the sort function in Perl). The resulting ordering is stored in a row index with the name
$idx. When there is an active row index, sort will re-order the rows selected by this index.

Each sort key consists of a variable name, optionally preceded or followed by a + or -
character to select ascending or descending sort order, respectively. The default order is
descending for Boolean variables and association scores, and ascending for all other variables.
The sort keys ’l1’ and ’l2’ sort in alphabetical order, while ’f-’ puts the most frequent
pair types first.

In order to break remaining ties randomly, an appropriate additional sort key has to be spec-
ified. The usual choice are the association scores of the random measure (see the UCS::AM
manpage). It may be necessary to compute this measure first, which can be conveniently
done with the add method, as shown in the example below.

75

order pair types by frequency (descending), breaking ties randomly
if (not $ds->var("am.random")) {
$ds->add("am.random");
$ds->temporary("am.random", 1); # temporary, don’t save to disk

}
$ds->sort("by.freq", "f-", "am.random");

$ds->rank($ranking, $key1, $key2, ...);

The rank method is similar to sort, but creates a ranking instead of a sort index. The
ranking is stored in the integer variable $ranking. Note that tied rows are assigned the same
rank, which is the lowest available rank (as in the Olympic Games) rather than the average
of all ranks in the group (as is often done in statistics). All other remarks about the sort
method apply equally well to the rank method, especially those concerning randomisation.

DICTIONARIES (LOOKUP HASHES)

A data set dictionary is a hash structure listing all the different values that a given variable
assumes in the data set (or all the different value combinations of several variables). For each value
(or value combination), which is called a key of the dictionary, the corresponding row numbers
in the data set can be retrieved (called a lookup of the key). In the terminology of relational
databases, such a dictionary is referred to as an index. Be careful not to confuse this notion with
the row index described above, which is used for subsetting and/or reordering the rows of a data
set.

A dictionary can be created for any variable (or combination of variables) with the dict method,
and is returned in the form of a UCS::DS::Memory::Dict object. NB: This dictionary is only
valid as long as the data set itself is not modified (which includes activation or deactivation of a
row index). Unlike a database index, the dictionary is not updated automatically. It is therefore
important to keep operations on the data set under strict control while a dictionary is in use. It is
always possible to add, modify, and delete variables that are not included in the dictionary, though.
For the same reason (as well as to save working memory), dictionaries should be deleted when they
are no longer needed.

The main purpose of a dictionary is to look up keys and find the matching rows in the data
set efficiently (the ucs-join program is an example of a typical application). It is often desirable to
choose variables in such a way that every key identifies a unique row in the data set (for instance,
the values of l1 and l2 identify a pair type, which should have only one entry in a data set).
A dictionary with this property is called unique. Both unique and non-unique dictionaries are
supported (unique dictionaries are represented in a memory-efficient fashion). Lookup and similar
operations are implemented as methods of the UCS::DS::Memory::Dict object.

Although mainly intended for string values, dictionaries support all data types. Boolean vari-
ables will usually be of interest only in combination with other variables (possibly also Boolean
ones), and dictionaries are rarely useful for floating-point values.

$dict = $ds->dict($var1, ..., $varN);

Create a dictionary for the variables $var1, ..., $varN in the data set $ds. Each key of this
dictionary is a combination of N values, which must be specified in the same order as the
variable names. When a row index is in effect, keys and row numbers in the dictionary are
taken from the virtual data set defined by the activated index. The returned object of class
UCS::DS::Memory::Dict is a read-only dictionary: in order to take changes in the data
set $ds into account (including the activation or deactivation of a row index), a new object
has to be created with the dict method.

if ($dict->unique) { ... }
This method returns a true value iff $dict is a unique dictionary.

($max, $avg) = $dict->multiplicity;

76

$max = $dict->multiplicity;

Returns the maximum ($max) and average ($avg) number of rows matching a key in $dict.
The dictionary is unique iff $max equals 1.

@rows = $dict->lookup($x1, ..., $xN);

$row = $dict->lookup($x1, ..., $xN);

Look up a key, specified as an N -tuple of variable values ($x1, ..., $xN), in the dictionary
$dict and return the matching row numbers. The values $x1, ..., $xN must be given in the
same order as the variables $var1, ..., $varN in the dict method call when the dictionary
was created. When the key is not found in $dict, an empty list is returned.

In scalar context, the (number of the) first matching row is returned, or undef if the key is
not found in the dictionary.

@rows = $dict->lookup($ds2, $n);

$row = $dict->lookup($ds2, $n);

The lookup method can also be used to look up rows from a second data set $ds2, i.e. to
find rows in the dictionary’s data set $ds where the values of $var1, ..., $varN match the
$n-th row of $ds2. For this form of invocation, the dictionary variables must be defined in
$ds2 (otherwise, a fatal error is raised).

$n rows = $dict->multiplicity($x1, ..., $xN);

$n rows = $dict->multiplicity($ds2, $n);

When called with arguments, the multiplicity method returns the number of rows matching
a specific key in $dict. The key can be given in the same two ways as for the lookup method.
(Note that calling lookup in scalar context returns the first matching row, not the total
number of rows.)

@keys = $dict->keys;

$n keys = $dict->keys;

Returns an unsorted list of all dictionary keys in the internal representation (where each
key is a single string value). Such internal representations can be passed to the lookup
and multiplicity methods instead of an N -tuple ($x1, ..., $xN). In scalar context, the keys
method efficiently computes the number of keys in $dict.

Examples The keys method and the ability to use the returned internal representations in
the lookup method provide an easy way to compute the (empirical) distribution of a data set
variable, i.e. a list of different values and their multiplicities. (Note that calling lookup in scalar
context cannot be used to determine the multiplicity of a key because it returns the first matching
row in this case.)

frequency table for variable $v on data set $ds
$dict = $ds->dict($v);
@distribution =
sort values by multiplicity
sort { $b->[1] <=> $a->[1] or $a->[0] cmp $b->[0] }
compute multiplicity for each value
map { [$_, $dict->multiplicity($_)] }
for a single variable $v, internal keys are simply the values
$dict->keys;

undef $dict; # always erase dictionary after use

The following example is a bare-bones version of the ucs-join command, annotating the pair
types of a data set $ds1 with a variable $var from another data set $ds2 (matching rows according
to the pair types they represent, i.e. using the variables l1 and l2). Typically, $ds2 will be an
annotation database.

77

$ds1->add_variables($var); # assuming $var hasn’t previously exist in $ds1

$dict = $ds2->dict($var);

$dict->unique

or die "Not unique -- can’t look up pair types.";

foreach $n (1 .. $ds1->size) {

$row = $dict->lookup($ds1, $n);

$ds1->set_cell($var, $n, $ds2->cell($var, $row))

if defined $row;

}

undef $dict;

SEE ALSO

The ucsfile manpage for general information about UCS data sets and the data set file format,
the ucsexp manpage for an introduction to UCS expressions (which are used extensively in the
UCS::DS::Memory module) and wildcard patterns, the UCS::Expression manpage for information
on how to compile UCS expressions, and the UCS::DS manpage for methods that manipulate the
layout of a data set and its header information.

COPYRIGHT

Copyright 2004 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

78

3.15 UCS::DS::Format

ASCII-format data set or subset

SYNOPSIS

use UCS::DS::Memory;

use UCS::DS::Format;

$ds = new UCS::DS::Memory $filename; # needs in-memory representation

$formatter = new UCS::DS::Format $ds; # formatter object for data set $ds

$formatter->digits(6); # number of significant digits

$formatter->mode("table"); # only mode so far

$formatter->pagelength(50); # print in pages of 50 rows each

$formatter->pagelength(undef); # print as single table

$formatter->vars($pattern, ...); # select variables that will be shown

$formatter->print; # print formatted table on STDOUT

$formatter->print($filename); # write to file or pipe

DESCRIPTION

This module provides a convenient method to format data sets as ASCII tables, which can then be
used for viewing and printing. The formatter has to be applied to the in-memory representation
implemented by the UCS::DS::Memory module. Its output is printed on STDOUT by default,
but it can also be redirected to a file or pipe.

METHODS

$formatter = new UCS::DS::Format $ds;

Creates new formatter object for the data set $ds, which must be a UCS::DS::Memory
object. The formatter object should be used immediately after its creation and destroyed
afterwards. When any changes are made in the data set $ds, a new formatter has to be
created.

$formatter->digits($n);

Configure $formatter to display approximately $n significant digits for floating-point variables
(data type DOUBLE). $n must be at least 2.

$formatter->mode(”table”);

The default mode table prints the data set in the form of a simple ASCII table with column
headers. It is the only supported mode so far.

$formatter->pagelength($rows);

Configure $formatter to format data set in separate pages of $n rows each. The individual
pages are separated by a single blank line. Use of this option may improve the formatting
quality, helps to avoid excessive columns widths, and reduces the delay before partial results
can be displayed.

When $rows is set to 0 or omitted, the entire data set is printed as a single table. This is
also the default behaviour.

$formatter->vars($pattern, ...);

Display only variables matching the specified wildcard patterns, in the specified order. This
configuration option can also be used to change the ordering of the columns or display a

79

variable in more than one column. Repeated calls to the vars method will overwrite, rather
than add to, the previous selection.

$formatter->print;

$formatter->print($filename);

Format the data set with the specified options, and print the result on STDOUT. When the
optional argument $filename is specified, the output is redirected to this file or pipe.

SEE ALSO

See also the manpage of the PRINT utility, which is based on the UCS::DS::Format module.

COPYRIGHT

Copyright 2004 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

80

3.16 UCS::Mathlibs

Interface to optional mathematics libraries

SYNOPSIS

use UCS::Mathlibs;

DESCRIPTION

TODO ...

COPYRIGHT

Copyright 2004 Stefan Evert.
This software is provided AS IS and the author makes no warranty as to its use and performance.

You may use the software, redistribute and modify it under the same terms as Perl itself.

81

Index

UCS, 34
ASSOCIATION MEASURE REGISTRY,

36
CONFIGURATION VARIABLES, 34
COPYRIGHT, 37
DESCRIPTION, 34
GENERAL FUNCTIONS, 35
MANIPULATING VARIABLE NAMES,

35
SEE ALSO, 37
SYNOPSIS, 34

ucs-add, 26
Association Scores, 26
COPYRIGHT, 27
Derived Variables, 27
DESCRIPTION, 26
Rankings, 27
SYNOPSIS, 26
User-Defined Expressions, 27
VARIABLE SPECIFICATIONS, 26

ucs-config, 17
COPYRIGHT, 17
DESCRIPTION, 17
SYNOPSIS, 17

ucs-info, 31
COPYRIGHT, 31
DESCRIPTION, 31
SYNOPSIS, 31

ucs-join, 28
ANNOTATION DATABASES, 29
COPYRIGHT, 29
DESCRIPTION, 28
SYNOPSIS, 28

ucs-list-am, 20
COPYRIGHT, 20
DESCRIPTION, 20
SYNOPSIS, 20

ucs-make-tables, 21
COMMAND LINE, 22
COPYRIGHT, 23
DESCRIPTION, 21
EXAMPLES, 22
REFERENCES, 23
Relational Cooccurrences, 21
Segment-based Cooccurrences, 21
SYNOPSIS, 21

ucs-print, 32
BUGS, 33
COPYRIGHT, 33
DESCRIPTION, 32
OPTIONS, 32
SYNOPSIS, 32

ucs-select, 25

COPYRIGHT, 25
DESCRIPTION, 25
SYNOPSIS, 25

ucs-sort, 30
COPYRIGHT, 30
DESCRIPTION, 30
EXAMPLES, 30
SYNOPSIS, 30

ucs-summarize, 24
COPYRIGHT, 24
DESCRIPTION, 24
SYNOPSIS, 24

ucs-tool, 18
COPYRIGHT, 19
DESCRIPTION, 18
LISTING CONTRIBUTED SCRIPTS, 18
SCRIPT INVOCATION, 18
SYNOPSIS, 18
WRITING CONTRIBUTED SCRIPTS, 18

UCS::AM, 55
ADD-ON PACKAGES, 58
BUILT-IN ASSOCIATION MEASURES,

55
COPYRIGHT, 58
DESCRIPTION, 55
SYNOPSIS, 55

UCS::AM::HTest, 59
ASSOCIATION MEASURES, 59
COPYRIGHT, 61
DESCRIPTION, 59
SYNOPSIS, 59

UCS::AM::Parametric, 62
ASSOCIATION MEASURES, 62
COPYRIGHT, 63
DESCRIPTION, 62
SYNOPSIS, 62

UCS::DS, 64
COPYRIGHT, 66
DESCRIPTION, 64
METHODS, 64
SYNOPSIS, 64

UCS::DS::Format, 79
COPYRIGHT, 80
DESCRIPTION, 79
METHODS, 79
SEE ALSO, 80
SYNOPSIS, 79

UCS::DS::Memory, 71
COPYRIGHT, 78
DESCRIPTION, 71
DICTIONARIES (LOOKUP HASHES), 76
Examples, 77
GENERAL METHODS, 72

82

ROW INDEX METHODS, 74
SEE ALSO, 78
SYNOPSIS, 71

UCS::DS::Stream, 67
COPYRIGHT, 70
DESCRIPTION, 67
EXAMPLES, 69
INPUT STREAMS, 67
OUTPUT STREAMS, 69
SYNOPSIS, 67

UCS::Expression, 51
COPYRIGHT, 53
DESCRIPTION, 51
METHODS, 51
SEE ALSO, 53
SYNOPSIS, 51

UCS::Expression::Func, 54
COPYRIGHT, 54
DESCRIPTION, 54
FUNCTIONS, 54
SYNOPSIS, 54

UCS::File, 38
COPYRIGHT, 41
DESCRIPTION, 38
OPENING FILES, 38
SHELL COMMANDS, 40
SYNOPSIS, 38
TEMPORARY FILES, 39

UCS::Mathlibs, 81
COPYRIGHT, 81
DESCRIPTION, 81
SYNOPSIS, 81

UCS::R, 42
COPYRIGHT, 43
DESCRIPTION, 42
FUNCTIONS, 42
SPECIAL FUNCTIONS AND STATISTI-

CAL DISTRIBUTIONS, 43
SYNOPSIS, 42

UCS::R::Expect, 44
COPYRIGHT, 44
DESCRIPTION, 44
LIMITATIONS, 44
SYNOPSIS, 44

UCS::R::RSPerl, 45
COPYRIGHT, 45
DESCRIPTION, 45
SYNOPSIS, 45

UCS::SFunc, 46
COPYRIGHT, 50
DESCRIPTION, 47
SPECIAL FUNCTIONS, 47
STATISTICAL DISTRIBUTIONS, 48
SYNOPSIS, 46
The Binomial Distribution, 48
The Chi-Squared Distribution, 50

The Hypergeometric Distribution, 50
The Normal Distribution, 49
The Poisson Distribution, 49

ucsam, 12
COPYRIGHT, 15
INTRODUCTION, 12
References, 14
SOME ASSOCIATION MEASURES, 13
UCS CONVENTIONS, 14

ucsdoc, 16
COPYRIGHT, 16
DESCRIPTION, 16
SYNOPSIS, 16

ucsexp, 8
COPYRIGHT, 11
Dirty Tricks, 11
Examples, 8, 10
INTRODUCTION, 8
UCS EXPRESSIONS, 9
UCS Expressions for Programmers, 9
UCS WILDCARD PATTERNS, 8

ucsfile, 4
Association Scores and Rankings, 7
COPYRIGHT, 7
Core Variables, 5
DATA TYPES, 5
Derived Variables, 6
GLOBAL VARIABLES, 4
INTRODUCTION, 4
REFERENCES, 7
User-Defined Variables, 7
VARIABLES, 5

ucsintro, 2
COPYRIGHT, 3
General Documents, 2
INTRODUCTION, 2
REFERENCES, 3
TRIVIA, 3
UCS/Perl MODULES, 3
UCS/Perl PROGRAMS, 3

83

