Package ‘UCS’

July 9, 2004
Version 0.3.2
Title The UCS/R libraries
Author Stefan Evert <evert@ims.uni-stuttgart.de>
Maintainer Stefan Evert <evert@ims.uni-stuttgart.de>
Depends R (>= 1.6.0), graphics, stats, boot
Description All libraries from the UCS/R system
License Artistic License or GPL (same terms and conditions as Perl)

URL http://www.collocations.de/

R topics documented:

add.ranks . . .o L L 2
am.key2var L e 3
binom.conf.interval Lo oo 4
builtin.ams oL 5
Cheta o 5
Cgammma oo e e 6
dsfind.am 7
evaluation.file 8
evaluation.plot L L 9
EVm . . 13
BV e 14
fzm . . . 15
faa.kappa L e 17
Iaa.pta . o oL e 18
Ibeta o 19
Tgamma 20
Inre.goodness.of fit oL 21
order.by.am 22
precision.recall Lo 23
Rbeta o 24
read.dS.gz 25
read.spectrum L.l 26
Rgamma oL 27
spectrum.plot L L 28

2 add.ranks

ucs.ibrary o 29

UCS.PAL « ¢ v v v v e e e e e e e e e e e e e e e e e e e 30

UCS . e 31

writelexstats oL oL 33

77100 34
Index 36

add.ranks Compute Rankings for Annotated Association Measures (base)

Description

Add rankings (with or without ties) for specified association measures to a data set object.

Usage

add.ranks(ds, keys=ds.find.am(ds), randomise=TRUE, overwrite=TRUE)

Arguments
ds a UCS data set object
keys a character vector giving the names of one or more association measures.
When it is omitted, rankings are computed for all annotated measures.
randomise if TRUE, ties are broken randomly (default). Otherwise, tied rows are
assigned the same rank, which is the first free one (as in the Olympic
Games). See below for prerequisites.
overwrite if TRUE, existing rankings are overwritten (default). Otherwise, associa-
tion measures for which ranks are already annotated are silently skipped.
If you modify association scores within R, be sure to call add.ranks with
overwrite=TRUE.
Details

Since add.ranks is based on the order.by.am function, the prerequisites are the same: the
data set must contain association scores for the random measure if randomise=TRUE and an
id variable if randomise=FALSE. See the order.by.am manpage for further information.

Value

Invisibly returns a copy of ds annotated with the requested rankings. The rankings are
stored in variables r.*, where * stands for the name of an association measure (according
to the UCS naming conventions, cf. the am.key2var manpage).

See Also

order.by.am, am.key2var, ds.find.am, read.ds.gz

am.key2var 3

Examples

from the UCS/R tutorial
GLAW <- read.ds.gz("glaw.scores.ds.gz")
GLAW <- add.ranks(GLAW)

combine into single command
GLAW <- add.ranks(read.ds.gz("glaw.scores.ds.gz"))

am.key2var UCS Variable Names for Association Scores and Rankings (base)

Description

These functions implement the UCS naming conventions for variables storing association
scores and the corresponding ranking. is.valid.key checks whether a given string is valid
as a name for an association measure. am.key2var translates a valid AM name into the
corresponding variables (for scores or ranking), and am.var2key extracts the AM name
from such a variable.

Usage

is.valid.key(key, warn=FALSE)
am.key2var (key, rank=FALSE)

am.var2key(var)

Arguments
key a character vector, giving the names of one or more association measures
var a character vector of variable names, which must be either association
scores or rankings (but both types can be mixed in the vector)
warn if TRUE, issues a warning if the vector key contains invalid AM names.
All invalid entries are listed in the warning message.
rank if TRUE, return names of the ranking variables corresponding to the spec-
ified association measures. otherwise, return names of variables for asso-
ciation scores.
Value

is.valid.key returns a logical vector, am.var2key returns a list of AM names (“keys”),
and am.key2var returns a list of variable names (either for association scores or rankings,
depending on the rank parameter).

See Also

builtin.ams for information about built-in association measures, and the ucsfile man-
page in UCS/Perl for a description of the UCS naming conventions (enter the shell command
ucsdoc ucsfile).

4 binom.conf.interval

Examples

am.key2var(c("t.score", "MI"), rank=TRUE)
am.var2key(c("am.t.score", "r.MI"))

binom.conf.interval Binomial Confidence Intervals

Description

Computes confidence intervals for the success probability of a binomial distribution effi-
ciently. Unlike binom.test, this function can be applied to vectors.

Usage

binom.conf.interval(k, size, limit=c("lower","upper"),
conf.level=0.05, one.sided=FALSE)

Arguments
k a vector of non-negative integers. Each element represents the number of
successes out of size trials, i.e. the observed value of a random variable
with binomial distribution.
size a vector of positive integers. Each element represents the number of trials
of a binomial distribution.
limit if "upper", the upper boundaries of the confidence intervals are returned.
If "lower", the lower boundaries are returned. Note that this works both
for one-sided and for two-sided confidence intervals.
conf.level the required confidence level, or rather the significance level of the corre-
sponding binomial test (note that this behaviour differs from the built-in
binom.test function). The default conf.level=0.05 stands for 95%
confidence.
one.sided if TRUE, computes one-sided confidence interval (either lower or upper, de-
pending on the value of 1imit). If FALSE, a two-sided confidence interval
is computed (default).
Details

If one.sided=TRUE, the underlying test is one-sided (with alternative "less" or "greater",
depending on the 1imit parameter), and the non-trivial boundary of the confidence interval
is returned.

If one.sided=FALSE, the underlying test is two-sided and the requested boundary of the
two-sided confidence interval is returned. For efficiency reasons, the binom.conf . interval
function cheats a little and computes one-sided confidence intervals with significance level
conf.level / 2.

Value

A numeric vector with the requested boundary of confidence intervals for the unknown
success probabilities of binomial variables.

builtin.ams 5

See Also

binom.test

builtin.ams UCS/Perl Built-in Association Measures (base)

Description

builtin.ams returns a character vector listing the built-in association measures of the
UCS/Perl system (including the standard add-on packages), is.builtin.am checks whether
a specified measure belongs to this set, and am.key2desc returns a short description of the
specified measure.

Usage
builtin.ams()

is.builtin.am(key)

am.key2desc (key)

Arguments
key a character vector specifying the names of one or more association mea-
sures
Value

builtin.ams returns a character vector containing the names of all built-in association
measures, is.builtin.am returns a logical vector, and am.key2desc returns a character
vector with a short description of each of the measures in key.

See Also

The information provided by these functions is obtained from the UCS/Perl tool ucs-1list-
am. See the ucsam manpage in UCS/Perl for further information about built-in association
measures (using the shell command ucsdoc ucsam).

Examples

print(builtin.ams())
am.key2desc("chi.squared.corr")

6 Cgamma

Cbeta The Beta Function (sfunc)

Description

Computes the (complete) Beta function and its base 10 logarithm.

Usage

Cbeta(a, b, log=FALSE)

Arguments
a, b numeric vectors
log if TRUE, returns the base 10 logarithm of the Beta function (default:
FALSE)
Details

This is just a front-end to the built-in beta and lbeta functions, provided mainly for con-
sistent naming. Note that the logarithmic version is scaled to base 10 logarithms, according
to the UCS conventions.

Value

The Beta function with arguments (a, b), or its base 10 logarithm (if Log=TRUE).

See Also

beta, Ibeta, Rbeta, Cgamma, Igamma, Rgamma

Examples
x <- 5
y <- 3

((x+y+1) * beta(x+1l,y+1))"-1 # == choose(x+y, x)

Cgamma The Gamma Function (sfunc)

Description

Computes the (complete) Gamma function and its base 10 logarithm.

Usage

Cgamma(a, log=FALSE)

ds.find.am 7

Arguments
a a numeric vector
log if TRUE, returns the base 10 logarithm of the Gamma function (default:
FALSE)
Detalils

This is just a front-end to the built-in gamma and 1gamma functions, provided mainly for con-
sistent naming. Note that the logarithmic version is scaled to base 10 logarithms, according
to the UCS conventions.

Value
The Gamma function evaluated at a, or its base 10 logarithm (if 10g=TRUE).

See Also

gamma, Igamma, Rgamma, Cbeta, Ibeta, Rbeta

Examples

Cgamma(5 + 1) # = factorial(b)

ds.find.am List Association Scores and Rankings in Data Set (base)

Description

am.in.ds tests whether a specified association measure is annotated in a data set, ds.find.am
lists all annotated association measures, and ds.match.am searches the data set for AMs
whose names may be abbreviated to a unique prefix. All three functions look either for
association scores or for rankings.

Usage
am.in.ds(ds, keys, rank=FALSE, fail=FALSE)

ds.find.am(ds, rank=FALSE)

ds.match.am(ds, abbrevs, rank=FALSE)

Arguments

ds a UCS data set, read from a data set file with the read.ds.gz function

keys a character vector of AM names

abbrevs a character vector of AM names, each of which may be abbreviated to a
unique prefix (within the data set)

rank if TRUE, the functions look for annotated rankings; otherwise, they look
for annotated association scores (default)

fail if TRUE, the function aborts with an error message unless all specified AMs

are annotated in the data set

8 evaluation.file

Details

If any of the abbrevs do not have a unique match in the data set, ds.match.am aborts with
an error message (listing all strings that failed to match uniquely).

Value

am.in.ds returns a logical vector of the same length as keys. ds.find.am and ds.match.am
return a character vector containing the names of the annotated association measures.

See Also

read.ds.gz, am.var2key

Examples

GLAW <- read.ds.gz("glaw.scores.ds.gz")
print(ds.find.am(GLAW))

evaluation.file Evaluation Graphs for Association Measures (plots)

Description

The evaluation.plot function is often invoked twice with the same parameter settings,
once for on-screen display, and once for saving the plot to a PostScript file. evaluation.file
automates this process, automatically switching between colour mode for the screen version
and B/W mode for the PostScript version.

Usage

evaluation.file(ds, keys, file, bw=NULL, ...)

Arguments
ds a UCS data set object (passed to evaluation.plot)
keys a character vector specifying the names of association measures to be
evaluated (passed to evaluation.plot)
file a character string giving the name of a file to which the PostScript version
of the plot will be saved
bw if TRUE, both versions will be in B/W; if FALSE, both versions will be
in colour. If unspecified, evaluation.file switches automatically from
colour mode (for the screen version) to B/W mode (for the PostScript
file), which is the most common use.
Details

PostScript versions can be suppressed by setting
ucs.par(do.file=FALSE)

In this case, evaluation.file will only draw the screen versions of the graphs, which is
convenient when experimenting and while fine-tuning the plots.

evaluation.plot

See Also

evaluation.plot, ucs.par, and the tutorial script ‘tutorial.R’ in the ‘script/’ directory.

evaluation.plot

Evaluation Graphs for Association Measures (plots)

Description

An implementation of evaluation graphs for the empirical evaluation of association measures
in terms of precision and recall, as described in (Evert, 2004, Ch. 5). Graphs of precision,
recall and local precision for n-best lists, as well as precision-by-recall graphs are all provided
by a single function evaluation.plot.

Usage

evaluation.plot(ds, keys, tp=ds$b.TP,

Arguments

ds

keys

tp

X.min, x.max

x.min=0, x.max=100, y.min=0, y.max=100,
x.axis=c("n.best", "proportion", "recall"),
y.axis=c("precision", "local.precision", "recall"),
n.first=ucs.par("n.first"), n.step=ucs.par("n.step"),
cut=NULL, window=400,

show.baseline=TRUE, show.nbest=NULL, show.npair=NULL,
conf=FALSE, conf.am=NULL, conf.am2=NULL,

test=FALSE, test.am1=NULL, test.am2=NULL,
test.step=ucs.par("test.step"), test.relevant=0,
usercode=NULL,

file=NULL, aspect=1, plot.width=6, plot.height=6,
cex=ucs.par("cex"), lex=ucs.par("lex"), bw=FALSE,
legend=NULL,

title=NULL, ...)

a UCS data set object, read in from a data set file with the read.ds.gz
function. ds must contain rankings for the association measures listed in
the keys parameter (use add.ranks to add such rankings to a data set
object).

a character vector naming up to 10 association measures to be evaluated.
Each name may be abbreviated to prefix that must be unique within the
measures annotated in ds. Use the ds.find.am function to obtain a list
of measures annotated in the data set, and see the ucsam manpage in
UCS/Perl for detailed information about the association measures sup-
ported by the UCS system (with the shell command ucsdoc ucsam).

a logical vector indicating true positives, parallel to the rows of the data
set ds. If tp is not specified, the data set must contain a variable named
b.TP which is used instead.

the limits of the x-axis in the plot, used to “zoom in” to an interesting
region. The interpretation of the values depends on the x.axis parameter
below. For x.axis="n.best" (the default case), x.min and x.max refer
to n-best lists. Otherwise, they refer to percentages ranging from 0 to
100. By default, the full data set is shown.

10

y.min, y.max

X.axis

y.axis

n.first

n.step

cut

window

show.baseline

show.nbest

show.npair

conf

conf.am

conf .am2

evaluation.plot

¢

the limits of the y-axis in the plot, used to “zoom in” to an interesting
region. The values are always interpreted as percentages, ranging from
0 to 100. By default, y.max is fitted to the evaluation graphs (unless
y.axis="recall", where y.max is always set to 100).

select variable shown on x-axis. Available choices are the n-best list size
n ("n.best", the default), the same as a proportion of the full data set
("proportion"), and the recall as a percentage ("recall"). The latter
produces precision-by-recall graphs. Unless you are silly enough to specify
y.axis="recall" at the same time, that is.

select variable shown on x-axis. Available choices are the precision ("precision",

the default), an estimate for local precision ("local.precision", see de-
tails below), and the recall ("recall"). All three variables are shown as
percentages ranging from 0 to 100.

the smallest n-best list to be evaluated. Shorter n-best lists typically lead
to highly unstable evaluation graphs. The standard setting is 100, but a
higher value may be necessary for random sample evaluation (see details
below). If n.first is not specified, the default supplied by ucs.par is
used.

the step width for n-best lists in the evaluation graphs. Initially, precision
and recall are computed for all n-best lists, but only every n.step-th one
is plotted, yielding graphs that look less jagged and reducing the size of
generated PostScript files (see the file parameter below). If n.step is
not specified, the default supplied by ucs.par is used.

for each association measure, pretend that the data set consists only of
the cut highest-ranked candidates according to this measure. This trick
can be used to perform an evaluation of n-best lists without having to
annotate the full data set. The candidates from all relevant n-best lists
are combined into a single data set file and cut is set to n.

number of candidates to consider when estimating local precision (default:
400), i.e. with the option y.axis="local". Values below 400 or above
1000 are rarely useful. See below for details.

if TRUE, show baseline precision as dotted horizontal line with label (this
is the default). Not available when y.axis="recall".

integer vector of n-best lists that will be indicated as thin vertical lines in
the plot. When x.axis="recall", the n-best lists are shown as diagonal
lines.

when x.axis="proportion", the total number of candidates in ds is
shown in the x-axis label. Set show.npair=NULL to suppress this, or
set it to an integer value in order to lie about the number of candidates
(rarely useful).

if TRUE, confidence intervals are shown as coloured or shaded regions
around one or two precision graphs. In this case, the parameter conf .am
must also be specified. Alternatively, conf can be set to a number indicat-
ing the significance level to be used for the confidence intervals (default:
0.05, corresponding to 95% confidence). See below for details. Note that
conf is only available when y.axis="precision".

name of the association measure for which confidence intervals are dis-
played (may be abbreviated to a prefix that is unique within keys)

optional second association measure, for which confidence intervals will
also be shown

evaluation.plot

test

test.aml

test.am2

test.step

test.relevant

usercode

file

aspect

11

if TRUE, significance tests are carried out for the differences between the
evaluation results of two association measures, given as test.aml and
test.am2 below. Alternatively, test can be set to a number indicating
the significance level to be used for the tests (default: 0.05). n-best lists
where the result difference is significant are indicated by arrows between
the respective evaluation graphs (when x.axis="recall") or by coloured
triangles (otherwise). See details below. Note that test is not available
when y.axsis="local".

the first association measure for significance tests (may be abbreviated to
a prefix that is unique within keys). Usually, this is the measure that
achieves better performance (but tests are always two-sided).

the second association measure for significance tests (may be abbreviated
to a prefix that is unique within keys)

the step width for n-best lists where significance tests are carried out, as
a multiple of n.step. The standard setting is 10 since the significance
tests are based on the computationally expensive fisher.test functio
and since the triangles or arrows shown in the plot are fairly large. If
test.step is not specified, the default supplied by ucs.par is used.

a positive number, indicating the estimated precision differences that are
considered “relevant” and that are marked by dark triangles or arrows in
the plot. See below for details.

a callback function that is invoked when the plot has been completed, but
before the legend box is drawn. This feature is mainly used to add some-
thing to a plot that is written to a PostScript file. The usercode function
is invoked with parameters region=c(x.min,x.max,y.min,y.max) and
pr, a list of precision/recall tables (as returned by precision.recall)
for each of the measures in keys.

a character string giving the name of a PostScript file. If specified, the
evaluation plot will be saved to file rather than displayed on screen. See
evaluation.file for a function that combines both operations.

a positive number specifying the desired aspect of the plot region (only
available for PostScript files). In the default case x.axis="n.best",
aspect refers to the absolute size of the plot region. Otherwise, it speci-
fies the size ratio between percentage points on the x-axis and the y-axis.
Setting aspect modifies the height of the plot (plot.height).

plot.width, plot.height

cex

lex

bw

the width and height of a plot that is written to a PostScript file, measured
in inches. plot.height may be overridden by the aspect parameter, even
if it is set explicitly.

character expansion factor for labels, annotations, and symbols in the
plot (see par for details). If cex is not specified, the default supplied by
ucs.par is used.

added to the line widths of evaluation graphs and some decorations (note
that this is not an expansion factor). If lex is not specified, the default
supplied by ucs.par is used.

if TRUE, the evaluation plot is drawn in black and white, which is mostly
used in conjunction with file to produce figures for articles (defaults to
FALSE). See below for details.

12 evaluation.plot

legend a vector of character strings or expressions, used as labels in the legend
of the plot (e.g. to show mathematical symbols instead of the names
of association measures). Use legend=NULL to suppress the display of a
legend box.

title a character vector or expression to be used as the main title of the plot
(optional)
any other arguments are set as local graphics parameters (using par)
before the evaluation plot is drawn

Details

When y.axis="local.precision", the evaluation graphs show local precision, i.e. an
estimate for the density of true positives around the n-th rank according to the respective
association measure. Local precision is smoothed using a kernel density estimate with
a Gaussian kernel (from the density function), based on a symmetric window covering
approximately window candidates (default: 400). Consequently, the resulting values do
not have a clear-cut interpretation and should not be used to evaluate the performance of
association measures. They are rather a means of exploratory data analysis, helping to
visualise the relation between association scores and the true positives in a data set (see
Evert, 2004, Sec. 5.2 for an example).

In order to generalise evaluation results beyond the specific data set on which they were
obtained, it is necessary to compute confidence intervals for the observed precision values
and to test whether the observed result differences are significant. See (Evert, 2004, Sec.
5.3) for the methods used and the interpretation of their results.

Confidence intervals are computed by setting conf=TRUE and selecting an association
measure with the conf .am parameter. The confidence intervals are displayed as a coloured
or shaded region around the precision graph of this measure (confidence intervals are not
available for graphs of recall or local precision). The default confidence level of 95% will
rarely need to be changed. Optionally, a second confidence region can be displayed for a
measure selected with the conf.am2 parameter.

Significance tests for the result differences are activated by setting test=TRUE (not avail-
able for graphs of local precision). The evaluation results of two association measures
(specified with test.aml and test.am2) are compared for selected n-best lists, and sig-
nificant differences are marked by coloured triangles or arrows (when x.axis="recall").
The default significance level of 0.05 will rarely need to be changed. Use the test.step
parameter to control the spacing of the triangles or arrows.

A significant difference indicates that measure A is truly better than measure B, rather than
just as a coincidence in a single evaluation experiment. Formally, this “true performance”
can be defined as the average precision of a measure, obtained by averaging over many sim-
ilar evaluation experiments. Thus, a significant difference means that the average precision
of A is higher than that of B, but it does not indicate how great the difference is. A tiny
difference (say, of half a percent point) is hardly relevant for an application, even if there
is significant evidence for it. If the test.relevant parameter is set, the evaluation.plot
function attempts to estimate whether there is significant evidence for a relevant difference
(of at least a many percent points as given by the value of test.relevant), and marks such
cases by darker triangles or arrows. This feature should be considered experimental and
used with caution, as the computation involves many approximations and guesses (exact
statistical inference for the difference in true precision not being available).

It goes without saying that confidence regions and significance tests do not allow evaluation
results to be generalised to a different extraction task (i.e. another type of cooccurrences
or another definition of true positives), or even to the same task under different conditions

EVm 13

(such as a source corpus from a different domain, register, time, or a corpus of different size).
The unpredictability of the performance of association measures for different extraction
tasks or under different conditions has been confirmed by various evaluation studies.

Generally, evaluation plots can be drawn in two modes: colour (bw=FALSE, the default)
or black and white (bw=TRUE). The styles of evaluation graphs are controlled by the
respective settings in ucs.par, while the appearance of various other elements is hard-
coded in the evaluation.plot function. In particular, confidence regions are either filled
with a light background colour (colour mode) or shaded with diagonal lines (B/W mode).
The triangles or arrows used to mark significant differences are yellow or red (indicating
relevance) in colour mode, and light grey or dark grey (indicating relevance) in B/W mode.
B/W mode is mainly used to produce PostScript files to be included as figures in articles,
but can also be displayed on-screen for testing purposes.

The evaluation.plot function supports evaluation based on random samples, or
RSE for short (Evert, 2004, Sec. 5.4). Missing values (NA) in the tp vector (or the b.TP
variable in ds) are interpreted as unannotated candidates. In this case, precision, recall
and local precision are computed as maxmium-likelihood estimates based on the annotated
candidates. Confidence intervals and significance tests, which should not be absent from
any RSE, are adjusted accordingly. A confidence interval for the baseline precision is au-
tomatically shown (by thin dotted lines) when RSE is detected. Note that n-best lists (as
shown on the x-axis) still refer to the full data set, not just to the number of annotated
candidates.

Note

The following functions are provided for compatibility with earlier versions of UCS/R:
precision.plot, recall.plot, and recall.precision.plot. They are simple front-ends

to evaluation.plot with the implicit parameter settings y.axis="recall" and y.axis="precision",
x.axis="recall" for the latter two.

References
Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations.
PhD Thesis, IMS, University of Stuttgart.

See Also

ucs.par, evaluation.file, read.ds.gz, and precision.recall. The R script ‘tutorial.R’
in the ‘script/’ directory provides a gentle introduction to the wide range of possibilities
offered by the evaluation.plot function.

EVm Ezpected Frequency Spectrum of a LNRE Model (zm, fzm)

Description
Computes the expected frequency spectrum, relative frequency spectrum, and conditional
parameter distribution of a LNRE model (Baayen, 2001) at sample size N.

Usage

EVm(model, m, N, rho=1, relative=FALSE, ratio=FALSE)

14 EV

Arguments
model an object of class "zm" or "fzm", representing a Zipf-Mandelbrot (ZM) or
finite Zipf-Mandelbrot (fZM) LNRE model
m a vector of positive integers, representing frequency ranks
N a vector of positive integers, representing sample sizes; either m or N should
be a single number
rho a vector of numbers in the range [0,1]. If length(rho) > 1, both m and
N should be single numbers. See below for details.
relative if TRUE, computes the relative frequency spectrum (see below for details)
ratio if TRUE, computes the ratio between consecutive elements in the expected
frequency spectrum
Details

The expected frequency spectrum consists of the numbers E[V;,,(N)], which stand for the
expected number of types in frequency class m at sample size N, according to the LNRE
model model (see Baayen, 2001).

If relative=TRUE, the relative frequency spectrum E[V,,(N)]/E[V(N)] is returned. If
ratio=TRUE, the ratios between consecutive expected class sizes, E[Vy,4+1(N)]/E[Vin(N)],
are returned.

If rho is specified, the conditional parameter distribution E[V, ,(N)] is returned, i.e.
the expected number of types in frequency class m at sample size N with probability
parameter m < p (Evert, 2004, Ch. 4). For relative=TRUE, the expected proportion
EV,m(N)]/E[V(N)] is returned instead.

Value

a numeric vector of appropriate length (determined either by m, N, or rho)

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations.
PhD Thesis, IMS, University of Stuttgart.

See Also

zm, fzm, EVm

EV Expected Vocabulary Size of a LNRE Model (zm, fzm)

Description

Computes the expected vocabulary size of a LNRE model (Baayen, 2001) at sample size
N.

Usage
EV(model, N)

fzm 15

Arguments
model an object of class "zm" or "fzm", representing a Zipf-Mandelbrot (ZM) or
finite Zipf-Mandelbrot (fZM) LNRE model
N a vector of positive integers, representing sample sizes
Detalils

The expected vocabulary size E[V(N)] is the expected number of types at sample size N,
according to the LNRE model model (see Baayen, 2001).

Value

a numeric vector of the same length as N

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

See Also

zm, fzm, EVm

fzm The Finite Zipf-Mandelbrot LNRE Model (fzm)

Description

Object constructor for a finite Zipf-Mandelbrot (fZM) LNRE model with parameters «, A
and B (see Evert, 2004a for details). Either the parameters are specified explicitly, or one
or more of them can be estimated from an observed frequency spectrum.

Usage
fzm(alpha, A, B)

fzm(alpha, A, N, V)
fzm(alpha, N, V, spc, m.max=15, stepmax=10, debug=FALSE)

fzm(N, V, spc, m.max=15, stepmax=10, debug=FALSE)

Arguments
alpha a number in the range (0, 1), the shape parameter « of the fZM model.
alpha can automatically be estimated from N, V, and spc.
A a small positive number A < 1, the parameter A of the fZM model. A
can automatically be estimated from N, V, and spc.
B a large positive number B > 1, the parameter B of the fZM model. B

can automatically be estimated from N and V.

N the sample size, i.e. number of observed tokens

16 fzm

v the vocabulary size, i.e. the number of observed types

spc a vector of non-negative integers representing the class sizes V;, of the
observed frequency spectrum. The vector is usually read from a file in
lexstats format with the read.spectrum function.

m.max the number of ranks from spc that will be used to estimate the o param-
eter

stepmax maximal step size of the nlm function used for parameter estimation. It
should not be necessary to change the default value.

debug if TRUE, print debugging information during the parameter estimation
process. This feature can be useful to find out why parameter estimation
fails.

Details

The fZM model with parameters o € (0, 1) and C' > 0 is defined by the type density function
g(m):=C 777!
for A < 7 < B. The normalisation constant C' is determined from the other parameters by

the condition 5
/ w-g(m)dr =1
A

The parameters « and A are estimated simultaneously by nonlinear minimisation (nlm) of
a multinomial chi-squared statistic for the observed against the expected frequency spec-
trum. Note that this is different from the multivariate chi-squared test used to measure the
goodness-of-fit of the final model (Baayen, 2001, Sec. 3.3).

Value

An object of class "fzm" with the following components:

alpha value of the o parameter

A value of the A parameter

B value of the B parameter

C value of the normalisation constant C
N number of observed tokens (if specified)
v number of observed types (if specified)

spc observed frequency spectrum (if specified)
This object prints a short summary, including the population size S and a comparison of
the first ranks of the observed and expected frequency spectrum (if available).

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

Evert, Stefan (2004a). A simple LNRE model for random character sequences. In Proceed-
ings of JADT 2004, Louvain-la-Neuve, Belgium, pages 411-422.

See Also

zm, EV, EVm, write.lexstats, read.spectrum, and spectrum.plot

iaa.kappa 17

iaa.kappa Inter-Annotator Agreement: Cohen’s Kappa (iaa)

Description

Compute the kappa statistic (Cohen, 1960) as a measure of intercoder agreement on a
binary variable between two annotators, as well as a confidence interval according to Fleiss,
Cohen & Everitt (1969). The data can either be given in the form of a 2 x 2 contingency
table or as two parallel annotation vectors.

Usage

iaa.kappa(x, y=NULL, conf.level=0.95)

Arguments
X either a 2 x 2 contingency table in matrix form, or a vector of logicals
v a vector of logicals; ignored if x is a matrix
conf.level confidence level of the returned confidence interval (default: 0.95, corre-
sponding to 95% confidence)
Value

A data frame with a single row and the following variables:

kappa sample estimate for the kappa statistic
sd sample estimate for the standard deviation of the kappa statistic
kappa.min, kappa.max

two-sided asymptotic confidence interval for the “true” kappa, based on
normal approximation with estimated variance

The single-row data frame was chosen as a return structure because it prints nicely, and
results from different comparisons can easily be combined with rbind.

References

Cohen, Jacob (1960). A coefficient of agreement for nominal scales. Educational and
Psychological Measurement, 20, 37-46.

Fleiss, Joseph L.; Cohen, Jacob; Everitt, B. S. (1969). Large sample standard errors of
kappa and weighted kappa. Psychological Bulletin, 72(5), 323-327.

See Also

iaa.pta

Examples

kappa should be close to zero for random codings

p <-0.1 # proportion of true positives

x <- runif (1000) < p # 1000 candidates annotated randomly
y <- runif (1000) < p

iaa.kappa(x, y)

18 iaa.pta

iaa.pta Inter-Annotator Agreement: FEstimates for the Proportion of
True Agreement (iaa)

Description

Compute confidence interval estimates for the proportion of true agreement between two

annotators on a binary variable, as described by Krenn, Evert & Zinsmeister (2004).
iaa.pta.conservative computes a conservative estimate that is rarely useful, while iaa.pta.homogeneous
relies on additional assumptions. The data can either be given in the form of a 2 x 2 con-

tingency table or as two parallel annotation vectors.

Usage

iaa.pta.conservative(x, y=NULL, conf.level=0.95, debug=FALSE)

iaa.pta.homogeneous(x, y=NULL, conf.level=0.95, debug=FALSE)

Arguments
X either a 2 x 2 contingency table in matrix form, or a vector of logicals
y a vector of logicals; ignored if x is a matrix
conf.level confidence level of the returned confidence interval (default: 0.95, corre-
sponding to 95% confidence)
debug if TRUE, show which divisions of the data are considered when computing
the confidence interval (see Krenn, Evert & Zinsmeister, 2004)
Details

This approach to measuring intercoder agreement is based on the assumption that the
observed surface agreement in the data can be divided into true agreement (i.e. can-
didates where both annotators make the same choice for the same reasons) and chance
agreement (i.e. candidates on which the annotators agree purely by coincidence). The
goal is to estimate the proportion of candidates for which there is true agreement between
the annotators, referred to as PTA.

The two functions differ in how they compute this estimate. iaa.pta.conservative con-
siders all possible divisions of the observed data into true and chance agreement, leading
to a conservative confidence interval. This interval is almost always too large to be of any
practical value.

iaa.pta.homogeneous makes the additional assumption that the average proportion of true
positives is the same for the part of the data where the annotators reach true agreement
and for the part where they agree only by chance. Note that there is no a priori reason
why this should be the case. Interestingly, the confidence intervals obtained in this way for
the PTA correspond closely to those for Cohen’s kappa statistic (iaa.kappa).

Value

A numeric vector giving the lower and upper bound of a confidence interval for the propor-
tion of true agreement (both in the range [0, 1]).

Ibeta 19

Note

iaa.pta.conservative is a computationally expensive operation based on Fisher’s exact
test. (It doesn’t use fisher.test, though. If it did, it would be even slower than it is
now.) In most circumstances, you will want to use iaa.pta.homogeneous instead.

References

Krenn, Brigitte; Evert, Stefan; Zinsmeister, Heike (2004). Determining intercoder agree-
ment for a collocation identification task. In preparation.

See Also

iaa.kappa

Examples

how well do the confidence intervals match the true PTA?

true.agreement <- 700 # 700 cases of true agreement

chance <- 300 # 300 cases where annotations are independent
p <- 0.1 # average proportion of true positives

z <- runif(true.agreement) < p # candidates with true agreement

x.r <- runif(chance) < p # randomly annotated candidates

y.r <- runif(chance) < p

x <- c(z, x.r)

y <= c(z, y.r)

cat("True PTA =", true.agreement / (true.agreement + chance), "\n")
iaa.pta.conservative(x, y) # conservative estimate
iaa.pta.homogeneous(x, y) # estimate with homogeneity assumption
Ibeta The Incomplete Beta Function (sfunc)
Description

Computes the incomplete Beta function and its inverse. The Beta value can be scaled to a
base 10 logarithm.

Usage

Ibeta(x, a, b, log=FALSE)

Ibeta.inv(y, a, b, log=FALSE)

Arguments
a, b non-negative numeric vectors, the parameters of the incomplete Beta func-
tion
X a numeric vector with values in the range [0, 1], the point at which the
incomplete Beta function is evaluated
y a numeric vector, the values of the incomplete Beta function (or their base

10 logarithms if 10g=TRUE)
log if TRUE, the Beta values are base 10 logarithms (default: FALSE)

20 Igamma

Details

The incomplete Beta function is defined by the Beta integral
B(z;a,b) = / t 1=t at
0

Value

Ibeta returns the incomplete Beta function with parameters (a,b) evaluated at point x.

Ibeta.inv returns the point x at which the incomplete Beta function with parameters (a,b)
evaluates to y.

See Also

Cgamma, Igamma, Rgamma, Cbeta, Rbeta

Igamma The Incomplete Gamma Function (sfunc)

Description

Computes the incomplete Gamma function and its inverse. Both the lower and the upper
incomplete Gamma function are supported, and the Gamma value can be scaled to a base
10 logarithm.

Usage
Igamma(a, x, lower=TRUE, log=FALSE)

Igamma.inv(a, y, lower=TRUE, log=FALSE)

Arguments
a a non-negative numeric vector, the parameter of the incomplete Gamma
function
X a non-negative numeric vector, the point at which the incomplete Gamma
function is evaluated
y a numeric vector, the values of the incomplete Gamma function (or their
base 10 logarithms if 1og=TRUE)
lower if TRUE, computes the lower incomplete Gamma function (default). Oth-
erwise, computes the upper incomplete Gamma function.
log if TRUE, the Gamma values are base 10 logarithms (default: FALSE)
Details

The upper incomplete Gamma function is defined by the Gamma integral

F(aw):/ t* et dt

The lower incomplete Gamma function is defined by the complementary Gamma integral

’y(a,x):/ t* et dt
0

Inre.goodness.of.fit 21

Value

Igamma returns the (lower or upper) incomplete Gamma function with parameter a evalu-
ated at point x.

Igamma.inv returns the point x at which the (lower or upper) incomplete Gamma function
with parameter a evaluates to y.

See Also

Cgamma, Rgamma, Cbeta, Ibeta, Rbeta

lnre.goodness.of .fit Perform Goodness-of-Fit Evaluation of LNRE Model

Description

Uses the external 1nreChi2 program from the lexstats package to evaluate the goodness-
of-fit of a LNRE model with a multivariate chi-squared test (Baayen, 2001, Sec. 3.3).

Usage

lnre.goodness.of .fit(model, m.max=Inf, debug=FALSE)

Arguments
model an object representing a LNRE model whose parameters have been esti-
mated from observed word frequency data. The model must provide the
write.lexstats method, which creates the necessary data files. Cur-
rently, the Zipf-Mandelbrot (ZM, class "zm") and the finite Zipf-Mandelbrot
(fZM, class "fzm") model are supported.
m.max highest frequency rank to be included in the evaluation (limited by the
number of ranks that the write.lexstats method saves to disk, currently
15)
debug if TRUE, displays output of the 1lnreChi2 program and does not delete
temporary data files
Details

This function relies on the availability of the external 1nreChi2 program from the lexstats
package, which must be in the user’s search path. It uses the write.lexstats function
to create the necessary data files in a temporary directory, invokes the 1nreChi2 tool, and
parses its report file.

All LNRE models that implement a compatible write.lexstats method are supported.
Currently, these are objects of class "zm" or "fzm". The object must include observed word
frequency data (in components N, V, and spc), which is usually achieved by estimating the
model parameters from the observed frequency spectrum.

22 order.by.am

Value

A data frame with one row and three columns:

X2 the value of the multi-variate x? test statistic
daf the degrees of freedom of the approximate Y2 distribution of the test
statistic under the null hypothesis
P the p-value for the test
References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

See Also

zm, fzm, write.lexstats

order.by.am Sort Rows of a Data Set by Association Scores (base)

Description

Sort the rows of a data set according to the annotated scores of an association measure (in
descending order). Ties in the ordering are broken randomly by default, using the random
association measure to yield a reproducible ordering.

Usage

order.by.am(ds, am, randomise=TRUE)

Details

With randomise=TRUE, the data set must contain a variable named am.random, which is
used to break ties in the ordering. Otherwise, tied rows are arranged according to their ID
values, and the corresponding id variable must be annotated in the data set.

The random association measure is used for breaking ties (rather than random numbers
generated on the fly) in order to ensure that the ordering is reproducible. If this measure
has not been annotated in a data set file, you can easily add the required variable to a data
set ds with the command

ds\$am.random <- runif (nrow(ds))
You should probably use set.seed to ensure a reproducible ordering.

Value

an integer vector of row numbers, which can be used as a row index for the data set object

See Also

read.ds.gz, add.ranks

precision.recall

23

precision.recall

Compute Precision and Recall for N-Best Lists (base)

Description

Computes precision and recall of n-best lists for a UCS data set annotated with true positives
and rankings (based on association scores). This function forms the basis for the evaluation
graphs in the plots packages.

Usage

precision.recall(ds, am, tp=ds$b.TP, step=1, first=1, cut=0, window=0)

Arguments

ds

am

tp

step

first

cut

window

Details

a UCS data set object

a character string giving the name of an association measure. The cor-
responding ranking must be annotated in the data set (usually with the
add.ranks function).

a logical vector, which must be parallel to the rows of the data set. TRUE
values indicate true positives (see details below for the use of missing
values). If tp is omitted, the data set must contain a Boolean variable
b.TP which is used instead.

step width for n-best lists considered, i.e. precision and recall are com-
puted for every step-th value of n only (default: 1)

smallest n-best list for which precision and recall are computed (default:
1)

pretend that data set consists only of the first cut rows in the ranking,
i.e. treat cut-best list as full data set (for percentage and recall).

if specified, local precision is estimated, considering a window of approx-
imately the given size around each value of n (uses the density function
for smoothing). Useful window sizes range from 400 to 1000.

The precision.recall function supports evaluation based on random samples (cf. Evert,
2004, Sec. 5.4). Any NA values in the tp parameter (or the b.TP variable) are interpreted
as unannotated candidates. Precision and recall values are computed from the annotated
candidates only (as are the tp, fp, and lp variables in the returned data frame). For a
random sample evaluation, confidence intervals should always be supplied with the raw

precision values,

and result differences should be tested for significance. Such tests are

implemented by the evaluation.plot function, for instance.

Value

An invisible data

n

perc

frame with rows corresponding to n-best lists and the following variables:

the number of candidates in the n-best list

the same as a percentage of the full data set (or the cut highest-ranking
candidates if specified)

24 Rbeta

tp the number of true positives in the n-best list

fp the number of false positives in the n-best list

precision the precision of the n-best list, i.e. the number of TPs divided by n
recall the recall of the n-best list, i.e. the number of TPs divided by the total

number of TPs in the data set

1p if window is specified, an estimate for the local precision, i.e. the density
of TPs in the vicinity of the n-th rank. Averages over a symmetric window
of approximately the specified total size by convolution with a Gaussian
kernel (using the density function).

References

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations.
PhD Thesis, IMS, University of Stuttgart.

See Also

add.ranks, read.ds.gz, evaluation.plot

Rbeta The Regularized Beta Function (sfunc)

Description

Computes the regularized Beta function and its inverse. The Beta value can be scaled to a
base 10 logarithm.

Usage
Rbeta(x, a, b, log=FALSE)

Rbeta.inv(y, a, b, log=FALSE)

Arguments
a, b non-negative numeric vectors, the parameters of the regularized Beta
function
X a numeric vector with values in the range [0, 1], the point at which the
regularized Beta function is evaluated
y a numeric vector, the values of the regularized Beta function (or their
base 10 logarithms if 1og=TRUE)
log if TRUE, the Beta values are base 10 logarithms (default: FALSE)
Details

The regularized Beta function scales the incomplete Beta function to the interval [0, 1], by
dividing through B(a,b), i.e.
B(x;a,b)

I(z;a,b) = Bla.b)

read.ds.gz 25

Value

Rbeta returns the regularized Beta function with parameters (a,b) evaluated at point x.

Rbeta.inv returns the point x at which the regularized Beta function with parameters (a,b)
evaluates to y.

See Also

Cgamma, Igamma, Rgamma, Cbeta, Ibeta

read.ds.gz Load UCS data set file (base)

Description

Load a UCS data set file, which is uncompressed on the fly if necessary.

Usage

read.ds.gz(filename)

Arguments

filename name, partial or full path of the data set file to be loaded.

Details

When the specified file is not found in the current directory, it is automatically searched
in the standard UCS data library (the ‘DataSet/’ directory and its subdirectories). Should
there be multiple matches, a warning is issued and the first match is used. You may specify
partial paths to identify the desired file unambiguously (e.g. "Distrib/dickens.ds.gz").
The automatic search facility is suppressed when filename is an explicit absolute or relative
path (starting with / or ./).

gzip-compressed data set files, whose name must end in .gz, are automagically decom-
pressed.

Value

A data frame with column names (i.e. variables) corresponding to those in the data set file.
11 and 12 are read as character vectors, all other string variables (£f.*) are converted into
factors, and Boolean variables (b.*) are converted into logicals.

Any comments and global variables in the file header are discarded.

Examples

load GLAW data set from UCS distribution
GLAW <- read.ds.gz("glaw.ds.gz")

26 read.spectrum

read.spectrum Read Frequency Spectrum File (lexstats)

Description

Read a word frequency spectrum from a .spc file in lexstats format (see Baayen, 2001).
Returns spectrum as integer vector, possibly including zeroes, whose m-th element gives the
number of types V,,, with frequency rank m. Also computes sample size N and vocabulary
size V.

Usage

read.spectrum(file, m.max=Inf, expected=FALSE)

Arguments
file a character string giving the name of a frequency spectrum file in lexstats
format (usually with the extension .spc)
m.max maximum length of frequency spectrum, i.e. frequency ranks m > myax
are discarded. Setting m.max is a good idea if there are high-frequency
types, so that the spectrum is sparse. For most applications, only the first
10 to 100 ranks are of interest.
expected if TRUE, reads expected class sizes (in the EVm column) rather than the
observed ones (in the Vm column). This is only possible when the .spc
file was generated by a LNRE model, of course.
Value

A list with the following components:

spc an integer vector containing the class sizes V,,

N the sample size computed from the spectrum

v the vocabulary size computed from the spectrum
References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

See Also

spectrum.plot, zm, fzm

Rgamma 27

Rgamma The Regularized Gamma Function (sfunc)

Description

Computes the regularized Gamma function and its inverse. Both the lower and the upper
regularized Gamma function are supported, and the Gamma value can be scaled to a base
10 logarithm.

Usage

Rgamma(a, x, lower=TRUE, log=FALSE)

Rgamma.inv(a, y, lower=TRUE, log=FALSE)

Arguments
a a non-negative numeric vector, the parameter of the incomplete Gamma
function
X a non-negative numeric vector, the point at which the incomplete Gamma
function is evaluated
y a numeric vector, the values of the regularized Gamma function (or their
base 10 logarithms if 1og=TRUE)
lower if TRUE, computes the lower regularized Gamma function (default). Oth-
erwise, computes the upper regularized Gamma function.
log if TRUE, the Gamma values are base 10 logarithms (default: FALSE)
Details

The regularized Gamma functions scale the corresponding incomplete Gamma functions to
the interval [0, 1], by dividing through I'(a). Thus, the lower regularized Gamma function
is given by
(a,)

I'(a)

and the upper regularized Gamma function is given by

P(a,z) =

Value

Rgamma returns the (lower or upper) regularized Gamma function with parameter a evalu-
ated at point x.

Rgamma. inv returns the point x at which the (lower or upper) regularized Gamma function
with parameter a evaluates to y.

See Also

Cgamma, Igamma, Cbeta, Ibeta, Rbeta

28

Examples

spectrum.plot

P(X >= k) for Poisson distribution with mean alpha

alpha <- 5
k <- 10

Rgamma (k, alpha) # == ppois(k-1, alpha, lower=FALSE)

spectrum.plot

Comparative Plot of Word Frequency Spectra (lexstats)

Description

Comparative plot of up to five word frequency spectra (see Baayen, 2001), either as a
side-by-side barplot or as points and lines on a logarithmic scale.

Usage

spectrum.plot(spc, m.max=Inf, log=FALSE, y.min=100, y.max=0,

Arguments

spc

m.max

log

y.min, y.max

legend

xlab, ylab
pch, 1lwd, 1ty

col

References

xlab="m", ylab="V_m / E[V_m]",

legend=NULL,

pch=c(1, 3, 15, 2, 20),

lwd=1,

lty=c("solid", "dashed", "dotdash", "dotted", "twodash"),
col=if (log) c("black") else c("black", "grey50", ...))

a list containing up to five frequency spectrum vectors. Such spectrum
vectors can be read in from a file in lexstats format with read. spectrum
or generated by a ZM or fZM model with the EVm method.

number of frequency ranks to be shown in plot. If unspecified, it is deter-
mined by the shortest spectrum vector in spc.

if TRUE, display frequency spectra as points and lines on a logarithmic
scale. If FALSE, display spectra as side-by-side barplot on a linear scale
(default). The latter is only useful when m.max is comparatively small.

range of y-axis. y.max is automatically computed to fit the data in spc.
y.min is only used when 1og=TRUE and defaults to 100.

a vector of character strings or expressions specifying the labels to be
shown in a legend box. If legend is missing, no legend box will be dis-
played.

character strings giving labels for the x-axis and y-axis
vectors of plot symbols, line widths, and line types (only used if 1og=TRUE.

Values are recycled if necessary. See the par manpage for possible ways
of specifying these attributes.

a vector of colours for the lines (Log=TRUE) or bars (log=FALSE) in the
plot. Values are recycled if necessary. Colours are specified as described
in the par manpage.

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

ucs.library 29

See Also

read.spectrum, zm, fzm, EVm

ucs.library Load UCS/R Modules

Description

Since the UCS/R functions are imported into the global namespace, they are collected in
various modules that can be loaded separately on demand. ucs.library loads a specified
module. When called without arguments, it prints a listing of available modules.

Usage

ucs.library(name, all=FALSE)

Arguments
name a character string giving the name of a single UCS/R module to be loaded.
If omitted, a list of all available modules is displayed (see below).
all if TRUE, all available modules are loaded
Details

Unlike the library and package functions, ucs.library(module) will read in the re-
quested module even if it has already been loaded.
Value

Calling the ucs.library function without arguments returns a list of all available UCS/R
modules as an object of class "UCSLibList", which prints as a nicely formatted listing
including one-line description. Use names(ucs.library()) to obtain a plain vector of
module names.

See Also

UCS for an overview of the UCS/R modules

Examples

print(ucs.library()) # list of available modules

ucs.library("base") # load and manage UCS data sets
ucs.library("plots") # evaluation graphs

ucs.library(all=TRUE) # load all modules

30 ucs.par

ucs.par Graphics Parameters for Fvaluation Graphs (plots)

Description

Set default graphics parameters for the evaluation.plot function, similar to par for gen-
eral graphics parameters. The current parameter values are queried by giving their names
as character strings. The values can be set by specifying them as arguments in name=value
form, or by passing a single list of named values.

Usage

ucs.par(...)

.ucs.PAR
Arguments
either character strings (or vectors) specifying the names of parameters
to be queried, or parameters to be set in named=value form, or a single
list of named values. Valid parameter names are described below.
Details

The current default parameters are stored in the global variable .ucs.PAR. They can be
queried by giving their names as one or more character vectors to ucs.par. ucs.par() (no
arguments) returns all UCS graphics parameters.

Parameters are set by specifying their names and the new values as name=value pairs. Such
a list can also be passed as a single argument to ucs.par, which is typically used to restore
previous parameter values (that have been saved in a list variable).

Value
When parameters are set, their former values are returned in an invisible named list. Such
a list can be passed as a single argument to ucs.par to restore the parameter values.

When a single parameter is queried, its value is returned directly. When two or more
parameters are queried, the result is a named list.

Note the inconsistency, which is the same as for par: setting one parameter returns a list,
but querying one parameter returns a vector (or a scalar, i.e. a vector of length 1).

UCS Graphics Parameters
col A character or integer vector specifying line colours forup to 10 evaluation graphs (see
the par manpage for details). Values are recycled if necessary.

1ty A character or integer vector specifying line styles for up to 10 evaluation graphs (see
the par manpage for details). Values are recycled if necessary.

1lwd A numeric vector specifying line widths for up to 10 evaluation graphs (see the par
manpage for details). Values are recycled if necessary.

bw.col The line colours used in B/W mode (see the evaluation.plot manpage for details).
bw.1ty The line styles used in B/W mode.

Uucs 31

bw.1lwd The line widths in B/W mode.

n.first The smallest n-best list to be evaluated (default: 100). Shorter n-best lists typ-
ically lead to highly unstable evaluation graphs. It may be necessary to set n.first
to a higher value for evaluation based on random samples (cf. evaluation.plot).

n.step The step width for n-best lists in evaluation graphs (default: 1). The default setting
evaluates all possible n-best lists. Higher values speed up computation, make graphs
look less jagged, and reduce the size of PostScript files. A useful range is 5...20,
depending on the size of the data set file.

test.step Step width for n-best lists where significance tests for result differences are
applied, as a multiple of n.step (default: 10). Since these tests are time-consuming
and significant differences are indicated by fairly large symbols in the plot, values
below 5 are rarely useful.

cex A character expansion factor for labels, annotations, and symbols in evaluation plots
(see par for details).

lex This parameter can be used to increase the line widths of evaluation graphs and some
decorations. Not that lex is not an expansion factor, but is simply added to all line
widths in the plot.

do.file If FALSE, evaluation.file will not generate PostScript files, which is useful while
testing and fine-tuning plots (default: TRUE).

See Also

evaluation.plot, evaluation.file, par

Examples

print (names(ucs.par())) # list available parameters

ucs.par("col", "lty", "lwd") # the default line styles
ucs.par(c("col", "1lty", "lwd")) # works as well

temporary changes to graphics paramters:
par.save <- ucs.par(n.first=200, n.step=5)
plots use the modified parameters here

ucs.par (par.save) # restore previous values
ucs.library("plots") # reload module for factory defaults
ucs Introduction to UCS/R
Description

UCS/R consists of a set of R libraries related to the visualisation of cooccurrence data and
the evaluation of association measures. The current functionaliy includes: evaluation graphs
for association measures (in terms of precision and recall), measures for inter-annotator
agreement, and two population models for word frequency distributions.

Usage

source ("/path/to/UCS/System/R/1ib/ucs.R")
ucs.library()

32

Details

ucs

UCS/R is initialised by sourceing the file ‘ucs.R’ in the ‘lib/’ subdirectory of the UCS/R
directory tree. This will make the UCS/R documentation available in the R process and
provide the ucs.library command, which is used to load individual UCS/R modules. Enter
ucs.library() now to display a list of available modules (see the ucs.library manpage
for details).

Currently, the following modules are available. The listing below also indicates the most
important manpages for each module. Throughout the documentation, it is assumed that
you are familiar with the UCS/Perl naming conventions and data set file format.

sfunc: Special Mathematical Functions

Convenience interfaces to the Gamma function (Cgamma), the incomplete (and regular-
ized) Gamma function and its inverse (Igamma, Rgamma), the Beta function (Cbeta),
the incomplete (and regularized) Beta function and its inverse (Ibeta, Rbeta), and
binomial confidence intervals (binom.conf.interval).

All these functions are computed from the pgamma and pbeta distributions (and the
corresponding quantile functions) in the standard library of R.

base: Basic Functions for Loading and Managing UCS data sets

This module provides functions for loading UCS data set files (read.ds.gz), listing
annotated association measures (ds.find.am, am.key2var), ranking by association
scores (order.by.am, add.ranks), and computing precision/recall tables for the eval-
uation of association measures (precision.recall).

The module also includes a listing of all built-in association measures in the UCS/Perl
system, including add-on packages (builtin.ams).

plots: Evaluation Graphs for Association Measures

This module plots precision-, recall-, and precision-by-recall graphs for the empirical
evaluation of association measures (all combined in a single function, evaluation.plot).
The graphs are highly configurable, either locally in each function call or by setting
global default (ucs.par). The evaluation.plot function supports confidence inter-

vals, significance tests for result differences, and evaluation based on random samples
(see Evert, 2004, Ch. 5).

iaa: Measures of Inter-Annotator Agreement

Computes Cohen’s kappa statistic with standard deviation (Fleiss, Cohen & Everitt,
1969) or confidence interval for proportion of truee agreement (Krenn, Evert & Zins-
meister, 2004) from a 2 x 2 contingency table (see iaa.kappa and iaa.pta)
lexstats: Interface to the lexstats Software

These are the beginnings of a rudimentary interface to the lexstats software for
the analysis of word frequency distributions (Baayen, 2001). Currently, only the
read.spectrum and spectrum.plot functions are useful.

zm: The Zipf-Mandelbrot (ZM) Population Model

This module implements a simple population model for word frequency distributions
(Baayen, 2001) based on the Zipf-Mandelbrot law. See (Evert, 2004a) for details.
Relevant help pages are zm, EV, EVm, write.lexstats, and lnre.goodness.of .fit.
fzm: The Finite Zipf-Mandelbrot (fZM) Population Model

This module implements the finite Zipf-Mandelbrot model, an extension of the ZM
model (Evert, 2004a). Relevant help pages are fzm, EV, EVm, write.lexstats, and
Inre.goodness.of .fit.

The command help (package=UCS) will give you a full index of available UCS/R help pages.
Use help.search() for full-text search.

write.lexstats 33

Note

The correct source path for the file ‘ucs.R’ can be set automatically with the UCS/R tool
ucs-config. Simply insert the statement

source("ucs.R")
on a separate line in your R script file (say, ‘my-script.R’) and run the shell command

ucs-config my-script.R

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations.
PhD Thesis, IMS, University of Stuttgart.

Evert, Stefan (2004a). A simple LNRE model for random character sequences. In Proceed-
ings of JADT 200/, Louvain-la-Neuve, Belgium, pages 411-422.

Fleiss, Joseph L.; Cohen, Jacob; Everitt, B. S. (1969). Large sample standard errors of
kappa and weighted kappa. Psychological Bulletin, 72(5), 323-327.

Krenn, Brigitte; Evert, Stefan; Zinsmeister, Heike (2004). Determining intercoder agree-
ment for a collocation identification task. In preparation.

See Also
ucs.library, the UCS/R tutorial (‘tutorial.R’ in the ‘script/’ subdirectory) and the UCS/Perl
documentation.
write.lexstats Write Data Files for Goodness-of-Fit Evaluation of LNRE Model
(zm, fzm)
Description

Creates three data files in lexstats format, which can be used to evaluate the goodness-
of-fit of a LNRE model with a multivariate chi-squared test (Baayen, 2001, Sec. 3.3), using
the 1nreChi2 program (Baayen, 2001).

Usage

write.lexstats(model, file)

Arguments

model an object of class "zm" or "fzm", representing a Zipf-Mandelbrot (ZM)
or finite Zipf-Mandelbrot (fZM) LNRE model. The object must include
observed word frequency data (in components N, V, and spc), usually
because the model parameters have been estimated from the observed
frequency spectrum.

file a character string giving the basename of the files that will be created

34 zm

Details

This functions creates files in lexstats format with the extensions .spc, .sp2, and .ev2,
which are required by the 1nreChi2 tool (Baayen, 2001, 270).

In addition, the basename file is extended with the string "_bZM" (for a ZM model) or
"_bfZM" (for a fZM model), so that the 1lnreChi2 tool can correctly identify the number
of degrees of freedom (reduced by two estimated parameters for the ZM model, and three
estimated parameters for the fZM model).

Value

The full basename of the created files (obtained by adding a model-specific suffix to the
file parameter).

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

See Also

zm, fzm, EV, EVm

zm The Zipf-Mandelbrot LNRE Model (zm,)

Description

Object constructor for a Zipf-Mandelbrot (ZM) LNRE model with parameters a and C' (see
Evert, 2004a for details). Either the parameters are specified explicitly, or one or both of
them can be estimated from an observed frequency spectrum.

Usage
zm(alpha, C)

zm(alpha, N, V)

zm(N, V, spc, m.max=15, stepmax=10, debug=FALSE)

Arguments

alpha a number in the range (0, 1), the shape parameter « of the ZM model.
alpha can automatically be estimated from N, V, and spc.

C a positive number, the parameter C' of the ZM model. C can automatically
be estimated from N and V.

N the sample size, i.e. number of observed tokens

v the vocabulary size, i.e. the number of observed types

spc a vector of non-negative integers representing the class sizes V,, of the

observed frequency spectrum. The vector is usually read from a file in
lexstats format with the read.spectrum function.

zm

m.max

stepmax

debug

Details

35

the number of ranks from spc that will be used to estimate the o param-
eter

maximal step size of the nlm function used for parameter estimation. It
should not be necessary to change the default value.

if TRUE, print debugging information during the parameter estimation
process. This feature can be useful to find out why parameter estimation
fails.

The ZM model with parameters o € (0, 1) and C > 0 is defined by the type density function

g(n)=C -7 ot

for 0 < m < B, where the upper bound B is determined from C by the normalisation

condition

/Ooow-g(ﬁ)dﬂzl

The parameter « is estimated by nonlinear minimisation (nlm) of a multinomial chi-squared
statistic for the observed against the expected frequency spectrum. Note that this is differ-
ent from the multivariate chi-squared test used to measure the goodness-of-fit of the final
model (Baayen, 2001, Sec. 3.3).

Value

An object of class "zm" with the following components:

alpha
B
C
N
v

spc

value of the o parameter

value of the upper bound B (a normalisation device)
value of the C' parameter

number of observed tokens (if specified)

number of observed types (if specified)

observed frequency spectrum (if specified)

This object prints a short summary, including a comparison of the first ranks of the
observed and expected frequency spectrum (if available).

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

Evert, Stefan (2004a). A simple LNRE model for random character sequences. In Proceed-
ings of JADT 200/, Louvain-la-Neuve, Belgium, pages 411-422.

See Also

fzm, EV, EVm, write.lexstats, read.spectrum, and spectrum.plot

Index

*Topic LNRE +Topic htest
EV, 14 binom.conf.interval, 3
EVm, 13 iaa.kappa, 16
fzm, 15 iaa.pta, 17
lnre.goodness.of . fit, 21 *Topic iplot
read.spectrum, 25 ucs.par, 29
spectrum.plot, 27 +Topic math
write.lexstats, 33 Cbeta, 5
zm, 34 Cgamma, 6
*Topic UCS Ibeta, 19
add.ranks, 1 Igamma, 20
am.key2var, 2 Rbeta, 24

Rgamma, 26

binom.conf.interval, 3
+*Topic models

builtin.ams, 4

Cbeta, 5 EV, 14

Cga.mma, 6 EVm, 13

ds.find.am, 6 fzm, 15

EV, 14 lnre.goodness.of .fit, 21
write.lexstats, 33

evaluation.file, 7

evaluation.plot, 8 zm, 34

+Topic univar

EVm, 13 ..
precision.recall, 22

fzm, 15 . «1sps
: +Topic utilities
iaa.kappa, 16
iaa.pta, 17 ucs, sl

-pta, ucs.library, 28
Ibeta, 19 ucs.PAR (ucs.par), 29
Igamma, 20 ' ' pars
lnre.goodness.of .fit, 21 add.ranks, 1, 8, 22-2/, 32
order.by.am, 22 am.in.ds (ds. find.am), 6
precision.recall, 22 am.key2desc (builtin.ams), 4
Rbeta, 24 am.key2var, 2, 2, 32
read.ds.gz, 25 am.var2key (am.key2var), 2
read.spectrum, 25
Rgamma, 26 binom.conf.interval, 3, 51
spectrum.plot, 27 builtin.ams, 3, 4, 32
ucs, 31

Cbeta, 5, 6, 19, 20, 24, 27, 51

ucs.library, 28
Cgamma, 5, 6, 19, 20, 24, 27, 31

ucs.par, 29

write.lexstats, 33 ds.find.am, 2, 6, 9, 32
zm, 34 ds.match.am (ds. find.am), 6

+Topic hplot
evaluation.file, 7 EV, 14, 16, 32, 34, 35
evaluation.plot, 8 evaluation.file, 7, 10, 12, 31
spectrum.plot, 27 evaluation.plot, 8, 8, 23, 24, 30-32

36

INDEX

EVm, 13, 14, 16, 28, 32, 3/, 35
fzm, 1/, 15, 21, 26, 28, 32, 34, 35

iaa.kappa, 16, 18, 32
iaa.pta, 17, 17, 32

Ibeta, 5, 6, 19, 20, 24, 27, 31
Igamma, 5, 6, 19, 20, 24, 27, 31
is.builtin.am (builtin.ams), 4
is.valid.key (am.key2var), 2

lnre.goodness.of . fit, 21, 32
order.by.am, 2, 22, 32

precision.plot (evaluation.plot), 8
precision.recall, 10, 12, 22, 32

Rbeta, 5, 6, 19, 20, 24, 27, 51

read.ds.gz, 2, 7, 8, 12, 22, 24, 25, 32

read.spectrum, 15, 16, 25, 28, 32, 34, 35

recall.plot (evaluation.plot), 8

recall.precision.plot
(evaluation.plot), 8

Rgamma, 5, 6, 19, 20, 24, 26, 31

spectrum.plot, 16, 26, 27, 32, 35

Uucs, 29, 31

ucs (UCS), 31
ucs.library, 28, 31, 3%
ucs.par, §-12, 29, 32

write.lexstats, 16, 21, 32, 33, 35

zm, 14, 16, 21, 26, 28, 32, 34, 3/

	add.ranks
	am.key2var
	binom.conf.interval
	builtin.ams
	Cbeta
	Cgamma
	ds.find.am
	evaluation.file
	evaluation.plot
	EVm
	EV
	fzm
	iaa.kappa
	iaa.pta
	Ibeta
	Igamma
	lnre.goodness.of.fit
	order.by.am
	precision.recall
	Rbeta
	read.ds.gz
	read.spectrum
	Rgamma
	spectrum.plot
	ucs.library
	ucs.par
	UCS
	write.lexstats
	zm
	Index

